Elliptic Functions

Weierstrass @-function



Recall that
1. an elliptic function f(u) is holomorphic = constant.

2. A an elliptic function of order 1.

)
one double pole,

—= The simplest non-trivial elliptic function has ¢ or

two simple poles,
\

in a period parallelogram; p(u) is the former, sn(u) is the latter.

We have defined p(u) as

? dr
the inverse function of u(z) = / .
o /473 — gow — g3

Here we construct it as a doubly periodic funtion by a series.



39.1 Construction of Weierstrass g-function

Notations:

e (21,{)y € C: linearly independent over R.
o ' := 70 + 7).

Goal: Construct a “simple” elliptic function with double poles at I'.

An elliptic function f(u) with poles of order n at I' is expanded as:

C

flu) = o

(u —m1Q1 — maQla)

at u = m1Q1 + meoQdy € 1.

—> The simplest candidate of elliptic functions with poles of order n at I':
1

n(u) 1= :

f ( ) Z (’LL —mq§ — mQQQ)n

m1,moEZ
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Theorem: Assume n = 3.

e The series f,,(u) converges absolutely and uniformly on any compact
set in C T

e f,(u) is an elliptic function with poles of order n at T.

e f,(u): even when n is even, odd when n is odd.
L 4

Proof:

K c C~\TI': compact. *

*

Dr:={z€ C||z| £ R}: aclosed disk. (cf. Figure.)

R: sufficiently large so that K C Dpg.

1
Enough to show: f, r(u) := Z (w =) converges absolutely
QeT, Q¢Dsg
and uniformly on Dg. (fn = fn.r+ (finite terms).)
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Lemma:
1
1) dM > 0 s.t. (1) < M foru € Dgr, QeI Dsp.
.
1
2) Z T converges for n = 3.
QEF,Q#O’ |

Weierstrass's M-test = f,, g converges absolutely and uniformly on Dp.

Proof of 2):

r: radius of a disk with centre 0 C parallelogram with vertices €21 &+ {)s.
Q,

(Figure).




Py: I'N (boundary of the parallelogram with vertices k€21 4= k{22).

(Figure)

—
1 - 1 - 1 8 v |1
I D D D e
Qel, Q0 k=1 QeP, k=1 k=1
which converges when n = 3. [dJLemma 2)



The second statement of the theorem <= the first:

e each summand in f,, is holomorphic in C \ I

— f,, is holomorphic in C \ T". (Weierstrass' theorem).

o (w— Q) has a pole of order n at Q € I.

The third statment:

1 _1)n
fn(_u) — Z (_u - Q)n — Z (u(_ g)Z/)n — (_1)nfn(u)

Qel Q'(=—-Q)el’

[ ITheorem

1 _ .
However, Z 2 diverges! = Theorem is not true for n = 2.
QEF,Q#O‘ |

Need “correction” to each summand.
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Theorem: The series

Y

e converges absolutely and uniformly on any compact set in C \\ T".
e gives an even elliptic function with poles of order 2 at I'.
Namely,

©(u) is an elliptic function of order 2: Weierstrass's @-function.

Proof:

1
We know: fs(u) = Z (0 — Q) is an elliptic function.
Qel’

|dea: Integrate f3 to get !



1
Integrate f3(u) without the first term — from O:

3
/O (f?)(?})—vg) dv—/o Z CEOE dv
Qer~{0}
Z / (<= uniform convergence)
Qer~{0} Che
1 1 1
2 Z ((u—Q)Q_Q?>°
Qelr~{0}

(Absolutely and uniformly convergent on a compact set C (C~T") U {0}.)

1 b 1
o p(u) = — — 2/0 (fg(’l]) — 1}3) dv: meromorphic with poles at I'.



e Evenness:

Qel'{0}
1 1 1
3 3 (e
2 2 2
Qer~{0} (u+9Q) )
1 1 1 /
=5+ ) (<u_mz - Q) —p(u), (O
Q' el {0}

e Periodicity:
f3(u): elliptic function
— @' (u+ Q1) = @' (u), o' (u+ Q) = @' (u).

—> 3C,Cy: p(u+ Q1) = p(u) + C, p(u+ Q2) = p(u) + Cs.

Qz’ Qz i\ :even
: ) o 2\ _52 0
>etting u = —5", Ci @(2> @( 2)
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e Other properties of p(u).

Laurent expansion at v = O:

o=t > (Grapm)

Qelr~ {0}

1
:—2+co+02u2+-°-+02nu2"—|--~

u
( : : )
Z —_0)2 02
u=0 "\ Qer-{o} (w=2)% 0

0 (n=0),
V@) Y o (0

\ Qel'~ {0}

1 dQn
Con =
? (2n)! du?™

(

1 1
By convention: go := 20cy = 602 o gs := 28c4 = 140 Z a6
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With these notations,

olu) = =5 + 22 Byt 4 0(u),
p’(u)——3+%u+g73u3—l—0( )
Hence,
= -2 o),
—4@@)3:_36 3? 732 - 353 Ou),
9 0(u) poy 00

Summing up,
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o (u)? — 4p(u) + go p(u): elliptic function with possible poles at I".
—g3 + O(u): no pole at 0.

— o' (u)? — 4p(u) + g2 p(u): elliptic function without poles = constant.
Namely, ©'(u)? — 4p(u) + g2 p(u) = —gs, or,

o' (u)? = 4p(u)® — g2 p(u) — gs.

This gives the equivalence of definitions:

dp
V49S — g2 — g3
Integrate from u = 0 (<> p(u) = o) to u (+> p(u)):

p(u) dz
u:/ |
00 \/4,23 — g2 2 — g3

— p(u) is the inverse function of the elliptic integral

dp
du

— \/4@3 — g2 0 — g3, i'e'v du =
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In fact,
W:C/Tsur (p(u), o (u)) €R

s the inverse of the Abel-Jacobi map AJ.

R: the elliptic curve = compactification of {(z,w) | w? = 42° — g5 2z — g3}.

Exercise: Prove the bijectivity of W as follows:

(i) Show that W is holomorphic even at u = 0 as a map to R.
(i) Show that ¢'(£2;/2) =0 for i =1,2,3 (3 = Q1 + Qo).

(iii) Show the bijectivity.
(

Hint: o(u) is of order 2, i.e., takes any value € P! twice on C/T".)

Exercise: Prove that any elliptic function f(u) with period I' is expressed

as follows:

f(u) = Ri(p(u)) + Ra(p(u)) ' (u), Ry, Ry : rational functions.
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39.2 Addition formulae of the @-function

Elliptic curve =2 C/I" has an additive group structure:
uymodI' +uo modI' = uy + uo mod I'.

—> addition formulae of elliptic functions.

Theorem (Addition formula of p).

If uy +us +u3 =0 (or =0 mod I'),

(Note: ©'(uz) = —¢'(u1 + u2), p(us) = p(u1 + uz).)
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Proof:

May assume @(u1) # p(us2).

(= analytically continued to all values afterwards.)
(a,b): a solution of
ap(ur) +b = @' (ur),
ap(uz) +b= ' (uz).
Explicit formulae (not used in the proof, used in the exercise):

L 9'(u) — ' (ua) p — Plu)p (u2) — ' (u1)p(uz)
p(ur) — p(uz) p(ur) — p(uz) |
f(u) := ¢@'(u) — ap(u) — b: an elliptic function of the third order, because

e linear combination of elliptic functions.
e a third order pole (that of '(u)) at u = 0.
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—> d three points, at which f = 0.

We know two of them: f(u1) = f(uz) = 0. Let us call the third one uyg.

By the general theorem for elliptic functions:
uo + u1 + uo = (sum of poles) =0 mod T.

— ug = uz mod ', i.e., f(ug) =0.

flur) = fuz) = f(uz) =0 & | p'(u2) p(uz) 1 —a | = 0.

—a | # 0 = The matrix is degenerate, i.e., det = 0.
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Corollary:

p(ur +uz) = —p(u1) — p(u2) + L (

4 o' (u1) — @’(U2))2

p(u1) — p(uz)

Proof: Exercise.

Hint: w1, us and ug satisfy

@/(U) — 4@(“)3 — g2p(u) — g3, ga’(u) = ap(u) + b.

— p(u1), p(uz) and p(us) satisfy a cubic equation.

Remark: The addition formula has a geometric interpretation.

(cf. Exercise.)
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