## Exercises on topology 17.01.2020

1. Prove that (a)  $\mathbb{RP}^n \cong S^n / O(1) = S^n / \{\pm 1\};$ 

(b)  $\mathbb{CP}^n \cong S^{2n+1} / \mathrm{U}(1) = S^{2n+1} / S^1;$ 

(c) The space of quaternionic 1-dimensional subspaces in  $\mathbb{H}^{n+1}$  (quaternionic projective space)  $\mathbb{HP}^n \cong S^{4n+3}/\mathrm{USp}(1) = S^{4n+3}/S^3$  (recall that  $\mathrm{USp}(n)$  is the subgroup of quaternionic-unitary transformations in  $\mathrm{GL}(n,\mathbb{H})$ ).

2. Prove that (a)  $\operatorname{Gr}(k, n, \mathbb{R}) \cong O(n)/(O(k) \times O(n-k));$ 

(b) The space of *oriented* k-subspaces in  $\mathbb{R}^n$  (Grassmannian of oriented subspaces)  $\operatorname{Gr}_+(k, n, \mathbb{R}) \cong \operatorname{SO}(n)/(\operatorname{SO}(k) \times \operatorname{SO}(n-k));$ 

(c)  $\operatorname{Gr}(k, n, \mathbb{C}) \cong \operatorname{U}(n)/(\operatorname{U}(k) \times \operatorname{U}(n-k));$ 

(d)  $\operatorname{Gr}(k, n, \mathbb{H}) \cong \operatorname{USp}(n)/(\operatorname{USp}(k) \times \operatorname{USp}(n-k)).$ 

3. Prove that (a)  $\operatorname{Gr}_+(2,4,\mathbb{R}) \cong S^2 \times S^2$ ; (b)  $\operatorname{SO}(4) \cong S^3 \times \operatorname{SO}(3)$ .

4. Let  $p: S^n \to \mathbb{RP}^n$  be the natural projection. Prove that

(a) the cone  $\operatorname{Cone}(p) \cong \mathbb{RP}^{n+1}$ ;

(b) The smash product  $S^m \# S^n \cong S^{m+n}$ ;

(c) The suspension  $\Sigma X \cong X \# S^1$ .

5. Prove that (a) the infinite-dimensional sphere  $S^{\infty}$  is contractible;

(b) The cone Cone X is contractible for any X.

(c) The space of based paths E(X, x) (subspace of C(I, X)) is contractible for any  $X \ni x$ .

# Exercises on topology 24.01.2020

1. Prove that (a)  $\pi_n(X, x) = \pi_0(\Omega^n X)$ , where  $\Omega^n X = \Omega \Omega \dots \Omega X$  (the iterated loop space based at x);

(b)  $\pi_n(X, x) = \pi_k(\Omega^{n-k}X, x).$ 

2. A space Y is called an H-space (H for H. Hopf) if we are given maps  $\mu: Y \times Y \to Y$ and  $\nu: Y \to Y$  such that:

 $\mu \circ (\mathrm{Id}_Y \times \mu) \sim \mu \circ (\mu \times \mathrm{Id}_Y) \colon Y \times Y \times Y \to Y$  (homotopy associativity);

 $\mu \circ j_1 \sim \operatorname{Id}_Y \sim \mu \circ j_2 \colon Y \to Y$  where  $j_1(y) = (y_0, y), \ j_2(y) = (y, y_0)$  (homotopy unit  $y_0 \in Y$ );

 $\mu \circ (\mathrm{Id}_Y \times \nu) \sim \varepsilon \sim \mu \circ (\nu \times \mathrm{Id}_Y) \colon Y \to Y$ , where  $\varepsilon(y) = y_0$  (homotopy inverse).

Prove that (a)  $X \to Ho_b(X, Y)$  (homotopy classes of based maps) is a functor into the category of groups if and only if Y is an H-space;

(b)  $X \to \operatorname{Ho}_b(X, Y)$  is a functor into the category of abelian groups if and only if Y is homotopically commutative.

3. Dually, a space Y is called an H'-space if we are given maps  $\Delta \colon Y \to Y \lor Y$  (coproduct) and  $\nu \colon Y \to Y$  such that:

 $(\mathrm{Id}_Y \lor \Delta) \circ \Delta \sim (\Delta \lor \mathrm{Id}_Y) \circ \Delta \colon Y \to Y \lor Y \lor Y$  (homotopy coassociativity);

 $\varpi_1 \circ \Delta \sim \operatorname{Id}_Y \sim \varpi_2 \circ \Delta \colon Y \to Y$  where  $\varpi_1, \varpi_2$  are the contractions of  $y_0 \lor Y, Y \lor y_0$  (homotopy counit);

 $(\mathrm{Id}_Y \lor \nu) \circ \Delta \sim \varepsilon \sim (\nu \lor \mathrm{Id}_Y) \circ \Delta \colon Y \to Y$  (homotopy coinverse).

Prove that (a)  $X \to \operatorname{Ho}_b(Y, X)$  (homotopy classes of based maps) is a functor into the category of groups if and only if Y is an H'-space;

(b)  $X \to \operatorname{Ho}_b(Y, X)$  is a functor into the category of abelian groups if and only if Y is homotopically cocommutative.

4. Let X be a topological space. Prove that

(a)  $\Omega X$  is an *H*-space; (b)  $\Omega \Omega X$  is homotopically commutative;

(c)  $\Sigma X$  is an *H'*-space; (d)  $\Sigma \Sigma X$  is homotopically cocommutative.

5. Given  $f: A \to X$  and  $g: A \to Y$  we define the *coproduct* 

$$X \sqcup_A Y := (X \sqcup Y)/(f(a) \sim g(a))$$

and maps

$$i: X \to X \sqcup Y \to X \sqcup_A Y, \ j: Y \to X \sqcup Y \to X \sqcup_A Y,$$

The corresponding square is called *cocartesian*:

$$\begin{array}{ccc} A & & & \\ & g & & Y \\ & \downarrow f & & j \downarrow \\ X & \stackrel{i}{\longrightarrow} & X \sqcup_A Y \end{array}$$

Prove that (a)  $\operatorname{Cyl}(f \colon X \to Y) = (X \times I) \sqcup_X Y;$ 

(b)  $C(X \sqcup_A Y, Z) = C(X, Z) \times_{C(A,Z)} C(Y, Z);$ 

(c) If g is a cofibration, then i is a cofibration.

# Exercises on topology 31.01.2020

1. Let  $f: A \to X$  be a continuous map. Prove that

(a) f is a cofibration if and only if  $f \times \operatorname{Id}_Y \colon A \times Y \to X \times Y$  is a cofibration;

(b) The composition of cofibrations is a cofibration;

(c) f is a cofibration if and only if the canonical map  $i: \operatorname{Cyl}(f) \to X \times I$  is retractable, that is  $\exists r: X \times I \to \operatorname{Cyl}(f)$  such that  $r \circ i = \operatorname{Id}_{\operatorname{Cyl}(f)}$ .

2. Let  $i: A \to X$  be a cofibration. Prove that (a) *i* is injective;

(b) If i(A) is closed in X, then the topology of A is induced from X (such a pair (X, A) is called a *Borsuk pair*).

3. Let  $A \subset X$  be a Borsuk pair,  $\widetilde{A} := \operatorname{Cyl}(A \to X)$ ,  $i: \widetilde{A} \to X \times I$  is the canonical map and  $r: X \times I \to \widetilde{A}$  is a retraction of problem 1(c). Set  $i(r(x,t)) := (\xi(x,t), \tau(x,t))$  and define  $\varphi(x) := \max_{t \in I} (t - \tau(x,t))$ . Prove that

(a)  $\varphi \colon X \to I$  is continuous and  $\{x \in X : \varphi(x) = 0\} = A;$ 

(b)  $\overline{H}(x,t,s) := (\xi(x,(1-s)t),(1-s)\tau(x,t)+st)$  is a homotopy  $(X \times I) \times I \to (X \times I)$ between  $i \circ r$  and  $\mathrm{Id}_{X \times I}$ ;

(c) The extension of homotopy property holds true for the cofibration  $\widetilde{A} \to X \times I$  (set  $H(x,t,s) := \overline{H}(x,t,s/\varphi(x))$  for  $s \leq \varphi(x)$  and  $(x,t) \notin \widetilde{A}$ , otherwise H(x,t,s) := (x,t).).

4. Prove that if (X, A) is a Borsuk pair and X is locally compact, then the restriction morphism  $C(X, Y) \to C(A, Y)$  is a fibration for any Y.

5. Using the fibrations  $S^{\infty} \to \mathbb{RP}^{\infty}$  and  $S^{\infty} \to \mathbb{CP}^{\infty}$  find all the homotopy groups of (a)  $\mathbb{RP}^{\infty}$ ; (b)  $\mathbb{CP}^{\infty}$ .

# Exercises on topology 07.02.2020

1. Recall that a homotopy between two morphisms  $f^{\bullet}, g^{\bullet} : A^{\bullet} \to B^{\bullet}$  of complexes is a collection of maps  $h^i : A^i \to B^{i-1}$  such that  $h^i \circ d_A + d_B h^{i-1} = f^i - g^i$ . Prove that

(a) the relation of being homotopic is an equivalence relation on  $\text{Hom}(A^{\bullet}, B^{\bullet})$ ;

(b) A contractible complex  $C^{\bullet}$  (i.e. such that  $\mathrm{Id}_{C^{\bullet}}$  is homotopic to 0) is acyclic;

(c) The set of morphisms in  $\text{Hom}(A^{\bullet}, A^{\bullet})$  homotopic to 0 forms a two-sided ideal.

2. Prove that an acyclic complex of free abelian groups is contractible.

3. Let  $(C^{\bullet}, \delta)$  be a complex of abelian groups. We define a new complex  $(D^{\bullet}, d)$  by  $D^i := \operatorname{Hom}(C^{-i}, \mathbb{Z}), df(c) := f(\delta c)$ . Prove that

(a) This defines a functor from the category of complexes of abelian groups to itself, and this functor takes homotopical morphisms to homotopical morphisms;

(b) If  $C^{\bullet}$  is contractible, then  $D^{\bullet}$  is contractible as well;

(c) If  $C^{\bullet}$  is acyclic and consists of free abelian groups, then  $D^{\bullet}$  is also acyclic and consists of free abelian grops;

(d) Give an example of an acyclic complex  $C^{\bullet}$  such that  $D^{\bullet}$  is not acyclic.

4. Let  $f: K^{\bullet} \to L^{\bullet}$  be a morphism of complexes. Prove that

(a)  $\operatorname{Cone}(f)^i := L^i \oplus K^{i+1}, \ d^i_{\operatorname{Cone}(f)}(l^i, k^{i+1}) := (d^i_L(l_i) + f^{i+1}(k^{i+1}), -d^{i+1}_K(k^{i+1}))$  is a complex;

(b)  $\pi: L^{\bullet} \to \operatorname{Cone}(f)^{\bullet}, \ l^i \mapsto (l^i, 0)$ , is a morphism of complexes;

(c)  $\delta: \operatorname{Cone}(f)^{\bullet} \to K^{\bullet+1}, \ (l^i, k^{i+1}) \mapsto k^{i+1}, \text{ is a morphism of complexes (here the differ$  $ential in the shifted complex <math>K^{\bullet+1} =: K[1]^{\bullet}$  is multiplied by -1 by definition);

(d) The sequence

$$\dots \to H^n(K^{\bullet}) \xrightarrow{f} H^n(L^{\bullet}) \xrightarrow{\pi} H^n(\operatorname{Cone}(f)^{\bullet}) \xrightarrow{\delta} H^{n+1}(K^{\bullet}) \xrightarrow{f} H^{n+1}(L^{\bullet}) \to \dots$$

is exact.

5. Let  $f: K^{\bullet} \to L^{\bullet}$  be a morphism of bounded complexes of free abelian groups inducing an isomorphism on cohomology. Prove that

(a)  $\operatorname{Cone}(f)^{\bullet}$  is a bounded acyclic complex of free abelian groups;

(b)  $\operatorname{Cone}(f)^{\bullet}$  is contractible;

(c) f is a homotopical equivalence.

## Exercises on topology 14.02.2020

1. For complexes  $A^{\bullet}, B^{\bullet}$  we define  $\operatorname{Hom}^{i}(A^{\bullet}, B^{\bullet}) := \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}(A^{n}, B^{n+i})$ .

(a) Define a differential  $d: \operatorname{Hom}^{i}(A^{\bullet}, B^{\bullet}) \to \operatorname{Hom}^{i+1}(A^{\bullet}, B^{\bullet});$ 

(b) Thus the category of complexes acquires a structure of differential graded category (dg-category). Prove that  $H^0(\operatorname{Hom}^{\bullet}(A^{\bullet}, B^{\bullet}))$  is the usual space of morphisms from  $A^{\bullet}$  to  $B^{\bullet}$  up to homotopy.

2. Prove that (a) the quotient space of a CW-complex X modulo a CW-subcomplex A is a CW-complex again;

(b) The suspension of a (pointed) CW-complex is a CW-complex again;

(c) If X, Y are CW-complexes,  $A \subset Y$  is a CW-subcomplex, and  $\varphi \colon A \to X$  is a cellular map, then  $X \cup_{\varphi} Y$  is a CW-complex again.

(d) The cylinder and the cone of a cellular map are CW-complexes;

(e) The bouquet of CW-complexes is a CW-complex;

(f) The bouquet of *n*-spheres is the *n*-skeleton of the product of these spheres.

3. Let X, Y be CW-complexes. We define a topology on  $X \times Y$  by the axiom (W) and denote the resulting space by  $X \times_W Y$ . Prove that

(a) The tautological map  $X \times_W Y \to X \times Y$  is continuous;

(b) If X or Y are locally finite, then  $X \times_W Y \simeq X \times Y$ ;

(c) If X and Y are locally countable, then  $X \times_W Y \simeq X \times Y$ .

4. Construct a cellular decomposition of (a)  $S^{\infty}$ ; (b)  $D^{\infty}$ .

5. Consider an embedding  $\mathbb{RP}^k \hookrightarrow \mathbb{RP}^n$ ,  $(x_0, \ldots, x_k) \mapsto (x_0, \ldots, x_k, 0, \ldots, 0)$ .

(a) Prove that  $\mathbb{RP}^n = \bigcup_{k=0}^n (\mathbb{RP}^k \setminus \mathbb{RP}^{k-1})$  is a cellular decomposition;

(b) Construct a cellular decomposition of  $\mathbb{CP}^n$  and of  $\mathbb{HP}^n$ .

## Exercises on topology 21.02.2020

1. Let  $k \ge \alpha_1 \ge \alpha_2 \ge \ldots \ge \alpha_{n-k} \ge 0$  be a collection of nonnegative integers. We define  $e_{\alpha} \subset \operatorname{Gr}(k, n, \mathbb{R})$  as  $e_{\alpha} := \{U \subset \mathbb{R}^n : \dim(U \cap \mathbb{R}^m) = m - j \text{ for any } k - \alpha_j + j \le m < k - \alpha_{j+1} + j + 1\}$  (where we set  $\alpha_0 = k$ ,  $\alpha_{n-k+1} = 0$ , and  $\mathbb{R}^1 \subset \mathbb{R}^2 \subset \ldots \subset \mathbb{R}^{n-1} \subset \mathbb{R}^n$  is a fixed complete flag). Prove that

(a)  $e_{\alpha} \simeq \mathbb{R}^{\alpha_1 + \ldots + \alpha_{n-k}};$ 

(b)  $\operatorname{Gr}(k, n, \mathbb{R}) = \bigcup_{\alpha} e_{\alpha}$  is a cellular decomposition.

2. Let  $\tau \in S_n$  be a permutation. Define

 $e_{\tau} = \left\{ U_1 \subset \ldots \subset U_{n-1} \subset \mathbb{R}^n : \dim(U_i \cap \mathbb{R}^j) = \sharp \{ p \le i : \tau_p \le j \} \right\} :$ 

a subset of the space of complete flags in  $\mathbb{R}^n$ . Prove that

(a)  $e_{\tau} \simeq \mathbb{R}^{\ell(\tau)}$ , where  $\ell(\tau)$  is the length (the number of disorders, i.e.  $\sharp \{1 \le i < j \le n : \tau_i > \tau_j\}$ ) of  $\tau$ ;

(b)  $F\ell(\mathbb{R}^n) = \bigcup_{\tau \in S_n} e_{\tau}$  is a cellular decomposition of the space of complete flags in  $\mathbb{R}^n$ .

3. Prove that (a) the 2-dimensional sphere with g handles has a cellular decomposition with a unique 2-cell and 2g 1-cells;

(b) the real projective plane with g handles has a cellular decomposition with a unique 2-cell and 2g + 1 1-cells;

(c) the Klein bottle with g handles has a cellular decomposition with a unique 2-cell and 2g + 2 1-cells.

4. A map  $f: X \to Y$  is called a *weak homotopy equivalence* if  $f_*: \pi_n(X) \to \pi_n(Y)$  is an isomorphism for any n. Prove that if  $f: X \to Y$  is a weak homotopy equivalence, then

(a) For any CW-complex Z the morphism  $f_*: \operatorname{Ho}(Z, X) \to \operatorname{Ho}(Z, Y)$  (homotopy classes of maps) is a bijection;

(b) If X and Y are CW-complexes, then f is a homotopy equivalence.

5. Prove that (a) for any Y there is a CW-complex X and a weak homotopy equivalence  $f: X \to Y$  (it is called a *cellular approximation* of Y);

(b) If  $g: Z \to Y$  is another weak homotopy equivalence, there is a unique up to homotopy map  $h: X \to Z$  such that  $g \circ h \sim f$ ;

(c) A cellular approximation is unique up to a homotopy equivalence.

#### Exercises on topology 28.02.2020

1. Prove that a simply-connected CW-complex is contractible if it has trivial

(a) homotopy groups; (b) homology groups; (c) cohomology groups.

2. Prove that (a) any two  $K(\pi, n)$  spaces are weakly homotopy equivalent;

(b) The homotopy groups of  $S^2$  and  $S^3 \times \mathbb{CP}^{\infty}$  are the same, but they are not homotopy equivalent;

(c) The homotopy groups of  $S^m \times \mathbb{RP}^n$  and  $S^n \times \mathbb{RP}^m$  are the same, but they are not homotopy equivalent for  $1 < m \neq n > 1$ .

3. Prove that (a)  $\mathbb{CP}^{\infty} = K(\mathbb{Z}, 2)$ ; (b)  $\mathbb{RP}^{\infty} = K(\mathbb{Z}/2\mathbb{Z}, 1)$ ;

(c) The lense space  $L_m^{\infty} := S^{\infty}/\mu_m$  (the *m*-th roots of unity group  $\mu_m \subset S^1$  acts freely on  $S^{\infty}$ ) is  $K(\mathbb{Z}/m\mathbb{Z}, 1)$ ;

(d)  $\Omega K(\pi, n) = K(\pi, n-1)$ ; in particular,  $\Omega \mathbb{CP}^{\infty}$  is homotopy equivalent to  $S^1$ .

4. (a) Prove that any smooth compact surface is either  $S^2$ , or  $\mathbb{RP}^2$ , or  $K(\pi, 1)$ ;

(b) Compute the fundamental group of any smooth compact surface.

5. Prove that the fundamental group  $\pi_1(X)$  acts trivially on the Hurewicz homomorphism  $h: \pi_n(X, x) \to H_n(X, \mathbb{Z})$ , i.e. for  $\alpha \in \pi_1(X, x)$ , we have  $h \circ \alpha_{\#} = h$ .

### Exercises on topology 06.03.2020

1. Compute the groups (a)  $H_{\bullet}(\mathbb{RP}^n, \mathbb{Z}/\ell\mathbb{Z})$ ; (b)  $H^{\bullet}(\mathbb{RP}^n, \mathbb{Z}/\ell\mathbb{Z})$ ;

(c) Compute the ring  $H^{\bullet}(\mathbb{RP}^n, \mathbb{Z}/\ell\mathbb{Z})$ . Here  $\ell$  is a nonnegative integer (in particular, it may happen  $\ell = 0$ ).

2. Let X be a CW-complex, and let  $f, g: \operatorname{sk}_n X \to Y$  be continuous maps to a space Y coinciding on  $\operatorname{sk}_{n-1} X$ . We consider a cochain  $c_f \in \mathcal{C}^{n+1}(X, \pi_n(Y))$  (in the complex computing cohomology of X with coefficients in the abelian group  $\pi_n(Y)$  given by

$$c_f(\alpha) := f \circ \chi_{\alpha}|_{S^n} \colon S^n = \partial D^{n+1} \to Y$$

and  $\delta_{f,g} \in \mathcal{C}^n(X, \pi_n(Y))$  given by

$$\delta_{f,g}(\beta) := (f \circ \chi_{\beta}) \cup_{S^{n-1}} (g \circ \chi_{\beta}) \colon S^n = D^n \cup_{S^{n-1}} D^n \to Y.$$

Prove that (a) The differential  $dc_f = 0$ ; (b)  $d\delta_{f,g} = c_g - c_f$ ; (c) Any cochain  $\delta \in \mathcal{C}^n(X, \pi_n(Y))$  can be realized as  $\delta_{f,g}$  for any f and an appropriate g.

3. Prove that the class of  $c_f$  in  $H^{n+1}(X, \pi_n(Y))$  vanishes iff f can be extended to  $\operatorname{sk}_{n+1} X$ after certain correction on  $\operatorname{sk}_n X \setminus \operatorname{sk}_{n-1} X$ .

4. Prove that if f, g are defined on  $\operatorname{sk}_{n+1} X$ , then  $d\delta_{f,g} = 0$ , and the class of  $\delta_{f,g}$  in  $H^n(X, \pi_n(Y))$  vanishes iff  $f|_{{\rm sk}_n X}$  and  $g|_{{\rm sk}_n X}$  can be connected by a homotopy constant on  $\operatorname{sk}_{n-1} X.$ 

5. Let  $\pi$  be an abelian group. (a) Prove that  $H_n(K(\pi, n), \mathbb{Z}) = \pi$  and  $H^n(K(\pi, n), \pi) =$ Hom $(\pi, \pi)$ ;

(b) Let X be a CW-complex. To a map  $f: X \to K(\pi, n)$  we associate the class  $f^* \operatorname{Id}_{\pi} \in$  $H^n(X,\pi)$ , where  $\mathrm{Id}_{\pi} \in H^n(K(\pi,n),\pi)$  is the fundamental class. Prove that  $f \mapsto f^* \mathrm{Id}_{\pi}$  is a bijection  $\operatorname{Ho}(X, K(\pi, n)) \cong H^n(X, \pi).$ 

#### Exercises on topology 13.03.2020

The first 5 problems comprise the notes for the class of March 6th, so it is not really necessary to submit their solutions.

1. An *exact pair* consists of two objects D, E of an abelian category (say, modules over a ring R) and three morphisms i, j, k forming an exact sequence

$$\dots \to D \xrightarrow{i} D \xrightarrow{j} E \xrightarrow{k} D \xrightarrow{i} D \to \dots$$

In particular,  $0 = (jk)^2$ :  $E \to E$ , so that we obtain the homology H(E, jk) = Ker(jk)/Im(jk). The *derived pair* 

 $\ldots \to D' \xrightarrow{i'} D' \xrightarrow{j'} E' \xrightarrow{k'} D' \xrightarrow{i'} D' \to \ldots$ 

is defined as follows: D' = Im(i), E' = H(E, jk), i', j', k' are induced by i, j, k:

i' is the restriction of i to  $\text{Im}(i) \subset D$ ;

j'(i(x)) is the class of j(x) in  $H(E, jk), x \in D$ ;

k'(of the class of  $y) = k(y), y \in E, jk(y) = 0.$ 

Prove that the derived pair of an exact pair is exact. Hence we have a sequence of exact pairs  $P_r = (D_r, E_r, i_r, j_r, k_r)$ : for r = 1 this is the initial pair  $P_1 = (D, E, i, j, k)$ , and for  $r \geq 1$  the pair  $P_{r+1}$  is the derived pair of  $P_r$ .

2. Assume that an exact pair  $P_1$  is bigraded, i.e. D, E are bigraded,  $D = \bigoplus D^{p,q}, E =$  $\bigoplus E^{p,q}$ , and the morphisms i, j, k have bidegrees (-1, 1), (0, 0), (1, 0) respectively. Prove that the derived pairs  $P_r$  are bigraded as well, and the morphisms  $i_r, j_r, k_r$  have bidegrees (-1,1),

(r-1, -r+1), (1, 0) respectively. Hence  $d_r = j_r k_r$  is a differential in  $E_r$  of bigegree  $(r, -r+1), (r-1) = j_r k_r$ and its cohomology  $H_r$  is isomorphic to  $E_{r+1}$  as a bigraded object. Thus,  $(E_r^{pq}, d_r)$  form a spectral sequence.

3. Under the assumptions of the previous problem, consider a diagram

Here any sequence consisting of one vertical step i, two horizontal steps j, k, a new vertical step i and so on, is an exact sequence. With this description,  $E_r^{p,q}$  is a subquotient of  $E^{p,q}$ , obtained by factoring  $k^{-1}(\operatorname{Im}(i^{r-1}))$  modulo  $j(\operatorname{Ker}(i^{r-1}))$  (where  $k^{-1}$  is the full preimage with respect to k). Describe the limit  $E_{\infty}^{p,q}$  as  $r \to \infty$ .

- 4. Let  $F^{p}K^{\bullet}$  be a decreasing filtration of a complex  $K^{\bullet}$ .
- a) Using the long exact sequences of cohomology arising from the exact triples of complexes

$$0 \to F^{p+1}K^{\bullet} \to F^pK^{\bullet} \to F^pK^{\bullet}/F^{p+1}K^{\bullet} \to 0,$$

construct a bigraded exact pair with

$$D^{p,q} = H^{p+q}(F^pK^{\bullet}), \ E^{p,q} = H^{p+q}(F^pK^{\bullet}/F^{p+1}K^{\bullet})$$

and morphisms i, j, k of bidegrees (-1, 1), (0, 0), (1, 0) respectively. The spectral sequence of

this exact pair is the spectral sequence of the filtered complex  $F^{\bullet}K^{\bullet}$ . b) Check that  $E_r^{p,q} = Z_r^{p,q}/(Z_{r-1}^{p+1,q-1} + dZ_{r-1}^{p-r+1,q+r-2})$ , where  $Z_r^{p,q} = d^{-1}(F^{p+r}K^{p+q+1}) \cap F^pK^{p+q}$ , and  $d_r^{p,q} \colon E_r^{p,q} \to E_r^{p+r,q-r+1}$  is induced by the differential d of the complex  $K^{\bullet}$ .

5. Assume that in the setup of the previous problem the filtration  $F^{\bullet}$  on every  $K^n$  is finite and exhaustive, i.e.  $\exists p_+(n), p_-(n)$  such that  $F^{p_+(n)}K^n = K^n, F^{p_-(n)}K^n = 0$ . Prove that for

$$r \ge r_0(p,q) := \max(p_+(p+q+1) - p_-(p+q) + 1, p_+(p+q) - p_-(p+q-1) + 1)$$

we have  $d_r^{p,q} = 0$ ,  $d_r^{p-r,q+r-1} = 0$ . Hence, in the limit  $E_{\infty}^{p,q} = Z_r^{p,q}/Z_{r-1}^{p+1,q-1}$  for  $r \ge r_0(p,q)$ , and  $Z_r^{p,q} = \operatorname{Ker}(d|_{F^pK^{p+q}}), \ Z_{r-1}^{p+1,q-1} = \operatorname{Ker}(d|_{F^{p+1}K^{p+q}})$  for  $r > r_0(p,q)$ .

We define a filtration  $F^{\bullet}$  on  $H^n := H^n(K^{\bullet})$  by  $F^p H^n =$  the image of  $H^n(F^p K^{\bullet})$  under the natural morphism  $F^p K^{\bullet} \to K^{\bullet}$ . Then for n = p + q we have  $E_{\infty}^{p,q} = F^p H^n/F^{p+1}H^n$ , i.e.  $\operatorname{gr}_F H^n = \bigoplus_{p+q=n} E_{\infty}^{p,q}$ , i.e. the spectral sequence converges to the cohomology  $H^{\bullet}(K^{\bullet})$ .

6. a) Consider the *canonical* filtration of a complex

$$(F^{p}K^{\bullet})^{n} = K^{n}$$
 for  $n < -p$ ,  $(F^{p}K^{\bullet})^{n} = \text{Ker}(d_{n})$  for  $n = -p$ ,  $(F^{p}K^{\bullet})^{n} = 0$  for  $n > -p$ .

Prove that the corresponding filtration on  $H^n(K^{\bullet})$  is trivial:  $F^pH^n = H^n$  for  $n \leq -p$ ,  $F^pH^n = 0$  for n > -p. Prove that  $E_1^{p,q} = H^{-p}(K^{\bullet})$  for q = -2p,  $E_1^{p,q} = 0$  for  $q \neq -2p$ , and  $d_1^{p,q} = 0$  for all p, q. Thus,  $d_r = 0$  for all  $r \geq 1$ , and  $E_r^{p,q} = E_1^{p,q}$ .

b) Consider the *bête*, i.e. "stupid" filtration of a complex  $(G^p K^{\bullet})^n = 0$  for n < p,  $(G^p K^{\bullet})^n = K^n$  for  $n \ge p$ . Prove that the corresponding filtration on  $H^n(K^{\bullet})$  is trivial:  $G^p H^n = H^n$  for  $p \le n$ ,  $G^p H^n = 0$  for p > n. Prove that  $E_r^{p,q} = 0$  for  $q \ne 0$ ,  $E_r^{p,q} = K^p$  for q = 0, r = 1,  $E_r^{p,q} = H^p(K^{\bullet})$  for  $q = 0, 2 \le r \le \infty$ . Finally,  $d_r^{p,q} : E_r^{p,q} \to E_r^{p+r,q-r+1}$  coincides with  $d_p : K^p \to K^{p+1}$  for q = 0, r = 1, and vanishes in the remaining cases.

7. A bicomplex  $(L^{\bullet\bullet}, d', d'')$  is a collection of differentials  $d'_{ij}: L^{ij} \to L^{i+1,j}, d''_{ij}: L^{ij} \to L^{i,j+1}$ with relations  $(d')^2 = 0, (d'')^2 = 0, d'd'' + d''d' = 0$ . The corresponding total complex  $K^{\bullet} = \operatorname{Tot}(L^{\bullet\bullet})$  is defined as  $K^n = \operatorname{Tot}^n := \bigoplus_{i+j=n} L^{ij}, d := d' + d''$ . Consider a decreasing filtration  $F'_p(K^n) := \bigoplus_{i+j=n}^{i \ge p} L^{ij}$ . The corresponding spectral sequence is denoted  $E^{pq}_r$ . Prove that  $E^{pq}_2 = H^p_{d'}(H^{\bullet,q}_{d''}(L^{\bullet\bullet}))$ .

#### Exercises on topology 20.03.2020

1. Recall the lense space  $L_m^{\infty}$  of problem 3(c) of February 28th. Prove that

$$H^{0}(L_{m}^{\infty},\mathbb{Z}) = \mathbb{Z}, \ H^{2n+1}(L_{m}^{\infty},\mathbb{Z}) = 0, \ H^{2n}(L_{m}^{\infty},\mathbb{Z}) = \mathbb{Z}/m\mathbb{Z} \ \text{for } n > 0.$$

2. Compute the cohomology  $H^{\bullet}(\mathrm{USp}(n),\mathbb{Z})$ .

3. Prove that for any fibration  $E \to B$  with fiber F the Euler characteristics (for rational cohomology) satisfy the relation  $\chi(E) = \chi(B)\chi(F)$ .

4. Let  $p: E \to B$  be a fibration with fiber  $S^n$  and a simply connected base B. Construct the Gysin exact sequence

$$\dots \to H^k(B) \xrightarrow{p^*} H^k(E) \to H^{k-n}(B) \xrightarrow{d_{n+1}} H^{k+1}(B) \xrightarrow{p^*} H^{k+1}(E) \to \dots$$

5. Let  $p: E \to S^n$  be a fibration with fiber  $F \stackrel{i}{\hookrightarrow} E$ , and let  $n \ge 2$ . Construct the Wang exact sequence

$$\dots \to H^k(E) \xrightarrow{i^*} H^k(F) \xrightarrow{d_n} H^{k-n+1}(F) \to H^{k+1}(E) \xrightarrow{i^*} H^{k+1}(F) \to \dots$$

### Exercises on topology 21.03.2020

The *Postnikov tower* of a topological space X is a sequence

where all the vertical maps are Serre fibrations inducing isomorphisms of the lowest homotopy groups, and  $X|_{n+1}$  is the homotopy fiber of  $X|_n \to K(\pi_n(X), n)$ . In particular,  $\pi_{< n}(X|_n) = 0$ , and  $\pi_{\geq n}(X|_n) \cong \pi_{\geq n}(X)$ . The Postnikov tower is Eckmann-Hilton dual to the filtration  $\mathrm{sk}_1 X \subset \mathrm{sk}_2 X \subset \mathrm{sk}_3 X \subset \ldots$ 

1. Prove that a)  $X|_2$  is the universal cover of X;

. . .

b) The homotopy fiber of  $X|_{n+1} \to X|_n$  is  $K(\pi_n(X), n-1)$ .

2. Prove that  $H^{\bullet}(K(\mathbb{Z},3),\mathbb{Z}) = \mathbb{Z} \oplus 0 \oplus 0 \oplus \mathbb{Z} \oplus 0 \oplus 0 \oplus \mathbb{Z}/2\mathbb{Z} \oplus \ldots$  (we only care up to degree 6).

3. a) Prove that  $H^{\bullet}(S^3|_4) = \mathbb{Z} \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus \mathbb{Z}/2\mathbb{Z} \oplus \ldots$  (we only care up to degree 5).

b) By the universal coefficients formula and Hurewicz isomorphism deduce that  $\pi_4(S^3) = \pi_4(S^3|_4) = H_4(S^3|_4) \cong \mathbb{Z}/2\mathbb{Z}$ . Note that by the Freudenthal suspension theorem it follows that  $\pi_{n+1}(S^n) = \mathbb{Z}/2\mathbb{Z}$  for n > 2.

4. Prove that  $H^{\bullet}(K(\mathbb{Z}, n), \mathbb{Q})$  is a free algebra with one generator in degree n (i.e. it is the algebra of polynomials if n is even, while for odd n it is the exterior algebra isomorphic to  $H^{\bullet}(S^n, \mathbb{Q})$ ).

5. Prove that if  $\pi_1(X) = 0$ , and  $H^{\bullet}(X, \mathbb{Q})$  is a free supercommutative graded algebra with generators  $x_s$  in degrees  $d_s$ , then the rank of  $\pi_i(X) \otimes_{\mathbb{Z}} \mathbb{Q}$  equals  $\sharp\{s : d_s = i\}$  (Theorem of H. Cartan and J.-P. Serre). More invariantly, recall that the rational homology  $H_{\bullet}(X, \mathbb{Q})$ carries a structure of a coalgebra, and the rational Hurewicz homomorphism  $h \otimes \mathbb{Q}$  is an isomorphism  $\pi_{\bullet}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\sim}$  Prim  $H_{\bullet}(X, \mathbb{Q})$ , where Prim  $H_{\bullet}(X, \mathbb{Q}) = \{a \in H_{\bullet}(X, \mathbb{Q}) :$  $\Delta(a) = a \otimes 1 + 1 \otimes a\}$ . In particular,  $\pi_{\bullet}(\mathrm{SU}(n))$  up to torsion is  $\mathbb{Z}$  in degrees  $3, 5, \ldots, 2n - 1$ (in fact, there is no torsion).

*Hint*: prove that the homotopy fiber of the classifying morphism  $X \to \prod_s K(\mathbb{Z}, d_s)$  has trivial rational cohomology, homology and homotopy groups.

## Exercises on topology 27.03.2020

1. Compute  $\pi_2(S^1 \vee S^2)$ .

2. Suppose a finite group  $\Gamma$  acts freely on a topological space Y, and  $X = Y/\Gamma$  (in other words, Y is a  $\Gamma$ -torsor over X). Prove that

a)  $H^{\bullet}(X, \mathbb{Q}) = H^{\bullet}(Y, \mathbb{Q})^{\Gamma}$  (the  $\Gamma$ -invariants);

b) The Euler characteristics  $\chi(Y) = |\Gamma| \cdot \chi(X)$  if both X and Y are finite CW-complexes.

3. Prove that a) the reduced cohomology of the suspension  $\Sigma X$  is equal to the shifted reduced cohomology of  $X: H^{\bullet}(\Sigma X, \text{pt}) = H^{\bullet}(X, \text{pt})[-1]$ , i.e.  $H^{n+1}(\Sigma X, \text{pt}) = H^n(X, \text{pt})$ ; b) The multiplication in  $H^{\bullet}(\Sigma X)$  is trivial.

4. Let  $i: Y \hookrightarrow X$  be a Borsuk pair (i.e. a cofibration) (e.g. a CW-subcomplex). Let  $\delta: H^{\bullet}(Y,\pi) \to H^{\bullet+1}(X/Y,\pi)$  be the connecting homomorphism in the long exact sequence of the pair  $Y \subset X$ . Let f denote the composition  $\operatorname{Cone}(i) = X \cup_i \operatorname{Cone}(Y) \to (X \cup_i \operatorname{Cone}(Y))/X = \Sigma Y$ . Prove the anticommutativity of the diagram

$$\begin{array}{cccc} H^{\bullet}(Y,\pi) & \stackrel{\delta}{\longrightarrow} & H^{\bullet+1}(X/Y,\pi) \\ \Sigma & & & & \\ & & & \\ H^{\bullet+1}(\Sigma Y,\pi) & \stackrel{f^*}{\longrightarrow} & H^{\bullet+1}(\operatorname{Cone}(i),\pi). \end{array}$$

5. For a fibration  $F \to \mathcal{E} \xrightarrow{p} B$  prove that the transgression  $\tau \colon E_m^{0,m-1} \to E_m^{m,0}$  coincides with the composition

$$E_m^{0,m-1} \hookrightarrow H^{m-1}(F) \xrightarrow{\delta} H^m(\mathcal{E},F) \xrightarrow{(p^*)^{-1}} H^m(B,\mathrm{pt}) = H^m(B) \twoheadrightarrow E_m^{m,0}$$

i.e.  $(p^*)^{-1}$  is well defined on  $(\delta \text{ of})$  the image of  $E_m^{0,m-1}$  in  $H^{m-1}(F)$  modulo the kernel of the projection  $H^m(B) \twoheadrightarrow E_m^{m,0}$ , where  $\delta$  is the connecting homomorphism in the long exact sequence of the pair  $F \subset \mathcal{E}$ .

### Exercises on topology 03.04.2020

- 1. Prove that a) The Stiefel variety  $St(k, \infty, \mathbb{C})$  is contractible;
- b)  $\operatorname{Gr}(k, \infty, \mathbb{C}) \sim B \operatorname{GL}(k, \mathbb{C});$

c) 
$$F\ell(\mathbb{C}^k) = \mathrm{U}(k)/(S^1)^k$$
.

2. Since the suspension functor  $\Sigma$  is the left adjoint functor to the loops functor  $\Omega$ , and  $\Omega K(\pi, n+1) = K(\pi, n)$ , we get  $f_n \colon \Sigma K(\pi, n) \to K(\pi, n+1)$ . Prove that the induced map  $f_n^* \colon H^{n+k+1}(K(\pi, n+1), \pi) \to H^{n+k}(K(\pi, n), \pi)$  is an isomorphism for n > k.

3. Prove that  $Sq^1$  is the Bockstein homomorphism.

4. Construct the natural transformation  $\phi: D_2 \circ [-1] \to [-1] \circ D_2$ .

5. Let X be a simplicial (i.e. triangulated) space; we denote by  $\mathscr{C}^{\bullet}(X, \mathbb{F}_2)$  its cochain complex spanned by functionals on standard simplices. For a simplex  $\sigma$  and  $i \leq j$  we denote by  $\Gamma_i^j \sigma$  its (j-i)-dimensional face with vertices  $i, i+1, \ldots, j-1, j$ . Prove that

a) For a cohomology class in  $H^n(X, \mathbb{F}_2)$  represented by a cocycle  $\alpha \in \mathscr{C}^n(X, \mathbb{F}_2)$ , the Steenrod square  $Sq^i(\alpha)$  is represented by a cocycle  $\gamma \in \mathscr{C}^{n+i}(X, \mathbb{F}_2)$  such that  $\gamma(\sigma) = \alpha(\Gamma_0^n \sigma)\alpha(\Gamma_i^{n+i} \sigma)$ ;

b) The same formula holds true in the singular cochain complex  $C^{\bullet}(X, \mathbb{F}_2)$  of an arbitrary space X.

### Exercises on topology 10.04.2020

1. Prove the existence of higher homotopies  $\Delta^{(q)}$  of [Notes, §2.1].

2. a) Prove that the configuration space  $\overset{\circ}{\mathbb{C}}^{(n)}$  of unordered *n*-tuples of distinct complex numbers is of type  $K(\pi, 1)$ .

Its fundamental group  $\pi = B_n$  is the braid group with generators  $\sigma_1, \ldots, \sigma_{n-1}$  and relations  $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, \ \sigma_i \sigma_j = \sigma_j \sigma_i$  for |j-i| > 1.

b) Define these generators and prove these relations.

The fundamental group  $\pi_1(\overset{\circ}{\mathbb{C}}{}^n)$  of the configuration space of *ordered n*-tuples of distinct complex numbers is the pure braid group  $PB_n$ : the kernel of the projection  $B_n \to S_n$ .

3. Prove that a) the cohomology ring of the lense space

$$H^{\bullet}(L_p^{\infty}, \mathbb{F}_p) = \Lambda_{\mathbb{F}_p}(\tau) \otimes \mathbb{F}_p[t], \ \deg \tau = 1, \ \deg t = 2;$$

b) The Bockstein homomorphism  $\beta_p(\tau) = t$ .

4. Recall that for a discrete group  $\Gamma$ , the cohomology  $H^{\bullet}(\Gamma, \pi)$  with coefficients in abelian group  $\pi$  is defined as  $H^{\bullet}(K(\Gamma, 1), \pi)$ . In particular,  $H^{\bullet}(\mathbb{Z}/p\mathbb{Z}, \mathbb{F}_p) = \Lambda_{\mathbb{F}_p}(\tau) \otimes \mathbb{F}_p[t]$ . Let  $\Gamma = \mathbb{F}_p^{\times} \ltimes \mathbb{F}_p$  be the group of affine transformations of the line over  $\mathbb{F}_p$ . Prove that

- a)  $\overset{P}{H^{\bullet}}(\Gamma, \mathbb{F}_p) = \Lambda_{\mathbb{F}_p}(t^{p-2}\tau) \otimes \mathbb{F}_p[t^{p-1}];$
- b) The restriction homomorphism  $H^{\bullet}(S_p, \mathbb{F}_p) \to H^{\bullet}(\Gamma, \mathbb{F}_p)$  is an isomorphism.
- 5. Prove that the differential operators

$$\Delta_{n,s}, n \in \mathbb{N}, s = 0, 1, \deg \Delta_{n,s} = -2n - s, \Delta_{0,0} = \mathrm{Id}$$

of [Notes, §4.1], form a topological basis of  $\Lambda[t, \tau]$ -module  $\operatorname{End}(\Lambda[t, \tau])$ , and the following relations hold:

$$\Delta_{n,0}\Delta_{m,0} = \binom{n+m}{n} \Delta_{n+m,0}, \ \Delta_{n,0}t^m = \sum \binom{m}{k} t^{m-k} \Delta_{n-k,0},$$
  
$$\Delta_{n,0}\Delta_{0,1} = \Delta_{n,1}, \ \Delta_{0,1}t^m = t^m \Delta_{0,1}, \ \Delta_{n,0}\tau = \tau \Delta_{n,0}, \ \Delta_{0,1}\tau = 1 - \tau \Delta_{0,1}$$

# Exercises on topology 17.04.2020

1. Prove that any endomorphism of the formal additive group  $\widehat{\mathbb{G}}_a$  with coordinate t over a field of characteristic p is of the form  $t \mapsto \sum_{i=0}^{\infty} \xi_i t^{p^i}$ .

Hence the endomorphism ring of the formal additive group over  $\overline{\mathbb{F}}_p$  is the ring  $\overline{\mathbb{F}}_p\{\{\mathrm{Fr}\}\}\$  with relations  $\mathrm{Fr} \cdot x = x^p \cdot \mathrm{Fr}$ .

2. Prove that a) the Thom isomorphisms for a cartesian diagram



satisfy  $\Phi' f^* = f^* \Phi;$ 

b) For vector bundles  $\mathcal{V}_1 \to B_1$ ,  $\mathcal{V}_2 \to B_2$  and their direct product  $\mathcal{V}_1 \times \mathcal{V}_2 \to B_1 \times B_2$  we have  $\Phi_{\mathcal{V}_1 \times \mathcal{V}_2}(x_1 \otimes x_2) = \Phi_{\mathcal{V}_1}(x_1) \otimes \Phi_{\mathcal{V}_2}(x_2)$ .

3. Prove that a) the cotangent bundle  $T^*\mathbb{RP}^n$  and the trivial line bundle  $\mathbb{R}$  sum up to the direct sum of n+1 copies of the tautological line bundle  $S_1 = \mathcal{O}(-1)$  over  $\mathbb{RP}^n \colon T^*\mathbb{RP}^n \oplus \mathbb{R} \simeq S_1^{\oplus n+1}$ ;

b) The total Stiefel-Whitney class  $w(\mathbb{RP}^n) := w(T\mathbb{RP}^n) = (1+\tau)^{n+1}$ .

4. Prove that a) the tangent bundle of  $\mathbb{RP}^r$  is nontrivial if  $r \neq 2^n - 1$ ;

b) If  $\mathbb{RP}^{2^n}$  admits an immersion (= locally in  $\mathbb{RP}^n$  closed embedding) into  $\mathbb{R}^{2^n+k}$ , then  $k \geq 2^n - 1$ . *Hint:*  $T\mathbb{RP}^{2^n} \oplus \mathcal{N}_{\mathbb{RP}^{2^n}/\mathbb{R}^{2^n+k}}$  (the normal vector bundle) is the restriction  $T\mathbb{R}^{2^n+k}|_{\mathbb{RP}^{2^n}}$ , i.e. a trivial vector bundle.

5. Prove that if  $\mathbb{RP}^r$  can be immersed into  $\mathbb{R}^{r+1}$ , then  $r = 2^n - 1$  or  $r = 2^n - 2$ .

# Exercises on topology 24.04.2020

1. Recall the Postnikov tower of Exercises of 21.03.20. Prove that

a)  $\operatorname{Gr}(n, \infty, \mathbb{R})|_2 = \operatorname{Gr}_+(n, \infty, \mathbb{R}) \simeq B \operatorname{SO}(n, \mathbb{R})$  (notation of Exercise 2 of 17.01.20);

b)  $\operatorname{Gr}(n,\infty,\mathbb{R})|_3 \simeq B\operatorname{Spin}(n,\mathbb{R})$ , where  $\operatorname{Spin}(n,\mathbb{R})$  is the two-fold (universal) cover of  $\operatorname{SO}(n,\mathbb{R})$ .

2. Recall the setup of Exercise 1 of 21.02.2020. Prove that all the incidence indices (the matrix coefficients of the differential of the cellular complex) are even, and hence the cells form a basis of  $H^{\bullet}(\operatorname{Gr}(k, n, \mathbb{R}), \mathbb{F}_2)$ , and in particular, dim  $H^r(\operatorname{Gr}(k, n, \mathbb{R}), \mathbb{F}_2)$  is the number of Young diagrams of total area r inscribed into the  $k \times (n - k)$  rectangle.

3. Prove that the algebra  $H^{\bullet}(\operatorname{Gr}(k, n, \mathbb{R}), \mathbb{F}_2)$  is generated by the Stiefel-Whitney classes  $w_1(\mathcal{S}_k), \ldots, w_k(\mathcal{S}_k), w_1(\mathcal{Q}_{n-k}), \ldots, w_{n-k}(\mathcal{Q}_{n-k})$  (where  $\mathcal{Q}_{n-k}$  is the universal quotient bundle of rank n-k) with the unique relation  $w(\mathcal{S}_k)w(\mathcal{Q}_{n-k}) = 1$ .

4. Let  $\mathcal{V}, \mathcal{V}'$  be vector bundles over B of ranks n, n'. Prove that the total Stiefel-Whitney class  $w(\mathcal{V} \otimes \mathcal{V}') = P(w_1(\mathcal{V}), \ldots, w_n(\mathcal{V}), w_1(\mathcal{V}'), \ldots, w_{n'}(\mathcal{V}'))$ , where the polynomial P of n+n' variables is defined by the property  $P(e_1, \ldots, e_n, e'_1, \ldots, e'_{n'}) = \prod_{i=1}^n \prod_{j=1}^{n'} (1 + t_i + t'_j)$ , and  $e_i$  (resp.  $e'_j$ ) are the elementary symmetric polynomials of t (resp. of t').

5. a) Prove the Wu formula  $Sq^k(w_m(\mathcal{V})) = \sum_{i=0}^k {\binom{m-k+i-1}{i}} w_{k-i}(\mathcal{V}) w_{m+i}(\mathcal{V});$ 

12

b) Prove that if  $w(\mathcal{V}) \neq 1$ , then the minimal r such that  $w_r(\mathcal{V}) \neq 0$  is necessarily of the form  $r = 2^n$ .

## Exercises on topology 01.05.2020

1. A real vector bundle  $\mathcal{V} \to B$  of rank n is *orientable* if  $\Lambda^n \mathcal{V} \setminus B$  has two connected components. In other words, the corresponding  $\operatorname{GL}(n,\mathbb{R})$ -torsor  $\mathcal{E} \to B$  can be reduced to a  $\operatorname{GL}_+(n,\mathbb{R})$ -torsor  $\mathcal{E}_+$ , that is  $\mathcal{E} = \mathcal{E}_+ \xrightarrow{\operatorname{GL}_+(n,\mathbb{R})} \operatorname{GL}(n,\mathbb{R})$ . Alternatively, choosing a metric, the corresponding  $\operatorname{O}(n,\mathbb{R})$ -torsor  $\mathcal{F} \to B$  can be reduced to a  $\operatorname{SO}(n,\mathbb{R})$ -torsor  $\mathcal{F}_+$ , that is  $\mathcal{F} = \mathcal{F}_+ \xrightarrow{\operatorname{SO}(n,\mathbb{R})} \operatorname{O}(n,\mathbb{R})$ . Prove that

a)  $\mathcal{V}$  is orientable if and only if  $w_1(\mathcal{V}) = 0$ .

b) An orientable vector bundle  $\mathcal{V}$  has  $w_2(\mathcal{V}) = 0$  if and only if the corresponding SO $(n, \mathbb{R})$ -

torsor  $\mathcal{F}_+$  can be reduced to a  $\operatorname{Spin}(n, \mathbb{R})$ -torsor  $\widetilde{\mathcal{F}}_+$ , i.e.  $\mathcal{F}_+ = \widetilde{\mathcal{F}}_+ \xrightarrow{\operatorname{Spin}(n, \mathbb{R})} \operatorname{SO}(n, \mathbb{R})$ .

2. Construct an isomorphism  $St(2,3,\mathbb{R}) \simeq \mathbb{RP}^3$ .

3. Recall the setup of Exercise 1 of 21.02.2020. Consider the cell  $e_{\alpha^{(i)}} \subset \operatorname{Gr}(k, n, \mathbb{R})$  corresponding to  $\alpha_1^{(i)} = i, \alpha_2^{(i)} = 0, \ldots$  (i.e. the corresponding partition is  $(i, 0, \ldots)$ ). Prove that  $\langle w_i(\mathcal{S}_k), e_\beta \rangle = \delta_{\alpha^{(i)}\beta}$ .

4. Given a rank *n* vector bundle  $\mathcal{V} \to B$  pick a metric and consider the corresponding sphere bundle  $S(\mathcal{V}) \xrightarrow{p} B$ . The pullback  $p^*\mathcal{V}$  is equipped with a canonical section *s* and its orthogonal complement  $s^{\perp} \subset p^*\mathcal{V}$ : a vector bundle of rank n-1. Prove that

a) For i < n,  $p^* w_i(\mathcal{V}) = w_i(s^{\perp});$ 

b) For  $i < n, p^* \colon H^i(B, \mathbb{F}_2) \to H^i(S(\mathcal{V}), \mathbb{F}_2)$  is injective.

This allows for an alternative definition of the Stiefel-Whitney classes by descending induction if we only know the definition of the top class  $w_n(\mathcal{V}) = \Phi^{-1}Sq^n(\mathfrak{t}_{\mathcal{V}}) = \Phi^{-1}\mathfrak{t}_{\mathcal{V}}^2$ . In particular, there is no need to use Steenrod squares. This is a typical application of the *splitting principle*.

5. a) Prove that the tangent bundle  $T \operatorname{Gr}(k, n, \mathbb{R}) \cong \mathcal{H}om(\mathcal{S}_k, \mathcal{Q}_{n-k});$ 

b) Given a smooth k-dimensional submanifold  $M \subset \mathbb{R}^n$  with normal bundle  $\mathcal{N}_{M/\mathbb{R}^n}$ , we have the Gauß map  $\gamma \colon M \to \operatorname{Gr}(k, n, \mathbb{R})$ . Prove that its differential  $d\gamma$  defines a section of the vector bundle  $\mathcal{H}om(TM, \mathcal{H}om(TM, \mathcal{N}_{M/\mathbb{R}^n})) = \mathcal{H}om(TM \otimes TM, \mathcal{N}_{M/\mathbb{R}^n})$  (called the second fundamental form of  $M \subset \mathbb{R}^n$ ).

### Exercises on topology 08.05.2020

1. Prove that a) The total Stiefel-Whitney class w(TM) of a compact *r*-dimensional manifold M is invertible in the cohomology ring  $H^{\bullet}(M, \mathbb{F}_2)$ . We denote the homogeneous components of the inverse class by  $\sum \bar{w}_i(TM) = w(TM)^{-1}$ ;

- b)  $\langle Sq^{\mathrm{inv}}(\xi), [M] \rangle = \langle w(TM)^{-1} \cdot \xi, [M] \rangle$  for any  $\xi \in H^{\bullet}(M, \mathbb{F}_2)$ ;
- c)  $\bar{w}_r = 0$  and  $\bar{w}_{r-1} = 0$  unless  $r = 2^n$ .

2. Recall the cap product  $\frown: H^k(M, \mathbb{F}_2) \otimes H_j(M, \mathbb{F}_2) \to H_{j-k}(M, \mathbb{F}_2)$ . We define the Steenrod squares in homology  $Sq^i: H_j(M, \mathbb{F}_2) \to H_{j-i}(M, \mathbb{F}_2)$  by the requirement  $\langle \xi, Sq^i(\eta) \rangle = \langle (Sq^{\mathrm{inv}})^i(\xi), \eta \rangle$ . Prove that

- a)  $Sq(\xi \frown \eta) = Sq(\xi) \frown Sq(\eta);$
- b)  $Sq(D[\Delta_M]/\eta) = Sq(D[\Delta_M])/Sq(\eta);$
- c)  $Sq[M] = \overline{w}(TM) \frown [M];$
- d)  $Sq^{\text{inv}}[M] = v^M \frown [M]$ , where  $v^M \in H^{\bullet}(M, \mathbb{F}_2)$  is defined in [Notes, §7.1.2].

3. Let  $(r_1, r_2, \ldots, r_n) \in \mathbb{N}^n$  be a sequence s.t.  $r_1 + 2r_2 + \ldots + nr_n = n$  (i.e.  $(i^{r_i})$  is a partition of n). For a smooth n-dimensional manifold M the Stiefel-Whitney number  $w_1^{r_1} \cdots w_n^{r_n}[M] \in \mathbb{F}_2$  is the value of  $w_1(TM)^{r_1} \cdots w_n(TM)^{r_n}$  on the fundamental homological class of M. Prove that if M is the boundary of a smooth n + 1-dimensional manifold with boundary, then all the Stiefel-Whitney numbers of M vanish.

4. Prove that  $H^{\bullet}(\operatorname{Gr}(k,\infty,\mathbb{C}),\mathbb{Z}) = \mathbb{Z}[c_1(\mathcal{S}_k),\ldots,c_k(\mathcal{S}_k)].$ 

5. For a complex rank n vector bundle  $\mathcal{V} \to B$  we denote by  $\mathcal{V}_{\mathbb{R}} \to B$  the real rank 2n vector bundle obtained by restriction of scalars from  $\mathbb{C}$  to  $\mathbb{R}$ . Prove that

a) For the complex conjugate bundle  $\mathcal{V}$  we have  $c_k(\mathcal{V}) = (-1)^k c_k(\mathcal{V})$ ; b) The Pontriagin class  $\sum_{i>0} (-1)^i p_i(\mathcal{V}_{\mathbb{R}}) = c(\mathcal{V}) \cdot \sum_{i>0} (-1)^i c_i(\mathcal{V})$ .

## Exercises on topology 15.05.2020

- 1. Prove that for a complex vector bundle  $\mathcal{V} \to B$ ,  $w(\mathcal{V}_{\mathbb{R}}) = c(\mathcal{V}) \pmod{2}$ .
- 2. For a real vector bundle  $\mathcal{V} \to B$  prove that  $w_{2i}^2(\mathcal{V}) = p_i(\mathcal{V}) \pmod{2}$ .
- 3. Prove that a) for a real vector bundle  $\mathcal{V} \to B$ ,

$$Sq^{1}(w_{2i}(\mathcal{V}) \cdot w_{2i+1}(\mathcal{V})) = c_{2i+1}(\mathcal{V} \otimes_{\mathbb{R}} \mathbb{C}) \pmod{2};$$

- b) For an oriented rank 2k + 1 vector bundle  $\mathcal{V} \to B$ ,  $Sq^1w_{2k}(\mathcal{V}) = eu_{2k+1}(\mathcal{V}) \pmod{2}$ .
- 4. Prove that a)  $\pi_r(\operatorname{St}(k, n, \mathbb{C})) = 0$  for  $r \leq 2(n-k)$ ;
- b)  $\pi_{2n-2k+1}(\operatorname{St}(k, n, \mathbb{C})) = \mathbb{Z}.$

5. Prove that the first obstruction  $o_{n-k+1}(\mathcal{V})$  to the extension of k-tuple of linearly independent sections of a complex rank n vector bundle  $\mathcal{V} \to B$  from  $\operatorname{sk}_{2n-2k+1} B$  to  $\operatorname{sk}_{2n-2k+2} B$  coincides with the Chern class  $c_{n-k+1}(\mathcal{V})$ .

# Exercises on topology 22.05.2020

14

1. Let  $\mathcal{V} \to B$  be a rank *n* complex vector bundle. We define its *Chern character* ch( $\mathcal{V}$ ) as  $n + \sum_{i=1}^{\infty} m_{(i)}^{c}(\mathcal{V})/i! \in H^{\bullet}(B, \mathbb{Q})$ . Prove that

a) For a line bundle  $\mathcal{L} \to B$ ,  $\operatorname{ch}(\mathcal{L}) = \exp(c_1(\mathcal{L}))$ ;

b)  $\operatorname{ch}(\mathcal{V} \oplus \mathcal{V}') = \operatorname{ch}(\mathcal{V}) + \operatorname{ch}(\mathcal{V}');$ 

c) The Chern character of any complex vector bundle is uniquely characterized by the properties a,b);

d) 
$$\operatorname{ch}(\mathcal{V} \otimes \mathcal{V}') = \operatorname{ch}(\mathcal{V}) \cdot \operatorname{ch}(\mathcal{V}').$$

2. Prove that  $m_{\lambda}^{p}(\mathcal{V}_{\mathbb{R}}) = m_{2\lambda}^{c}(\mathcal{V})$ , where  $2\lambda := (2\lambda_{1}, \ldots, 2\lambda_{\ell})$ .

3. Consider a smooth compact complex variety X of dimension n+1 containing a smooth compact complex subvariety Y of dimension n. We denote by  $L = D[Y] \in H^2(X, \mathbb{Z})$  the (Poincaré dual) fundamental class of  $Y \subset X$ . Prove that the total Chern class of the complex tangent bundle  $c(TY) = c(TX) \cdot (1+L)^{-1}|_Y$ .

4. Let  $Y \subset \mathbb{CP}^{n+1}$  be a smooth hypersurface of degree d (the zero level of a homogeneous degree d polynomial in n+2 variables).

a) Compute the total Chern class c(TY);

b) Prove that the characteristic number  $m_{(n)}^{c}[Y] = d(n+2-d^{n})$ .

5. Let Y be a smooth hypersurface of bidegree (1,1) in  $\mathbb{CP}^n \times \mathbb{CP}^m$ , where  $n, m \geq 2$ .

a) Prove that  $m_{(n+m-1)}^{c}[Y] = -\binom{n+m}{n};$ 

b) Prove that for any  $n \ge 1$  there is a smooth compact complex variety Y of dimension n such that  $m_{(n)}^c[Y] = p$  if n + 1 is a power of a prime number p, or  $m_{(n)}^c[Y] = 1$  if n is not a prime power.

### Exercises on topology 29.05.2020

1. Let X be a connected finite CW-complex such that  $\pi_{\langle k}(X,x) = 0$  for some  $k \geq 2$ . Using [Notes, Theorem 1.3], prove that the Hurewicz homomorphism  $\pi_r(X,x) \to H_r(X,\mathbb{Z})$  is an isomorphism modulo torsion for r < 2k - 1.

2. Let M be a real smooth compact oriented 4n-dimensional manifold equal to the boundary of an oriented manifold N. Prove that

a) The long exact sequence

$$\dots \to H^i(N, M; \mathbb{R}) \to H^i(N, \mathbb{R}) \to H^i(M, \mathbb{R}) \to H^{i+1}(N, M; \mathbb{R}) \to \dots$$

is Poincaré self-dual "symmetrically with the center in  $H^{2n}(M, \mathbb{R})$ ";

b) The (nondegenerate) Poincaré pairing on  $H^{2n}(M, \mathbb{R})$  has signature 0 (i.e. the number of positive squares equals the number of negative squares).

3. Prove that the stable complex cobordism ring  $\Omega^{\mathbb{C}}_{\bullet} \otimes_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}[\mathbb{CP}^1, \mathbb{CP}^2, \mathbb{CP}^3, \ldots].$ 

4. Similarly to Exercise 5 of 22.05.2020, using hypersurfaces in  $\mathbb{RP}^n \times \mathbb{RP}^m$  prove the existence of smooth manifolds  $Y^k$  of real dimension k such that  $m^w_{(k)}[Y^k] \neq 0$  if  $k + 1 \neq 2^i$  (monomial Stiefel-Whitney numbers).

5. Prove that a)  $Y^k$  is orientable if k is odd;

b) The products  $Y^{\lambda_1} \times \ldots \times Y^{\lambda_\ell}$  for  $\lambda \in \mathfrak{P}(n)$  such that  $\lambda_i + 1$  is not a power of 2 for any i, are linearly independent over  $\mathbb{F}_2$  in the group  $\mathscr{N}_n$  of cobordisms of not necessarily oriented n-dimensional manifolds. (In this group M + M = 0, evidently.)

#### Exercises on topology 05.06.2020

1. For a characteristic power series  $Q(x) = 1 + q_1 x + q_2 x^2 + \ldots$  we write the corresponding multiplicative Hirzebruch sequence as  $K_i(p_1, \ldots, p_i; q_1, \ldots, q_i)$  (certain polynomials in 2i variables with integral coefficients). Prove the following symmetry property:  $K_i(p_1, \ldots, p_i; q_1, \ldots, q_i) = K_i(q_1, \ldots, q_i; p_1, \ldots, p_i)$ .

2. Prove that  $Td(\mathbb{CP}^n) = 1$  for any n.

3. Prove that the coefficient of  $p_n$  in the multiplicative Hirzebruch sequence  $L_n(p_1, \ldots, p_n)$  of the *L*-genus equals  $(-1)^{n-1}2^{2n}(2^{2n-1}-1)B_{2n}/(2n)!$ .

4. Let M be a compact manifold of dimension n. Prove that

a) If n < 2k - 1, then  $\operatorname{Ho}(M, S^k) \simeq \operatorname{Ho}(\Sigma M, \Sigma S^k = S^{k+1}) \simeq \operatorname{Ho}(M, \Omega S^{k+1})$  is a group (cohomotopy group  $\pi^k(M)$ );

b) The generator  $s \in H^k(S^k, \mathbb{Z})$  defines the classifying map  $\sigma \colon S^k \to K(\mathbb{Z}, k)$ . The composition with  $\sigma \colon \pi^k(M) \to \operatorname{Ho}(M, K(\mathbb{Z}, k)) = H^k(M, \mathbb{Z})$  induces an isomorphism modulo torsion for n < 2k - 1.

5. Let  $f: M^n \to S^{n-4i}$  be a smooth map from a smooth oriented compact *n*-dimensional manifold to a sphere, and let  $y \in S^{n-4i}$  be a regular value of f, so that  $M^{4i} := f^{-1}(y)$  is a smooth compact oriented manifold of dimension 4i. Prove that

a)  $\langle L_i(T\dot{M^n}) \cdot f^*s, [M^n] \rangle = \operatorname{sign}(M^{4i})$ , where s is the generator of  $H^{n-4i}(S^{n-4i}, \mathbb{Z})$ ;

b) If 8i < n-1, then the cohomological class  $L_i(TM^n) \in H^{4i}(M^n, \mathbb{Q})$  is uniquely characterized by the property a).

16