
1. March 27th

1.1. Hq(K(π, n),Z) are finitely generated: clear for n = 1, then by induction in n from the
s.s. of

pt
K(π,n−1)−−−−−→ K(π, n) :

the first non-finitely generated group in the first row cannot be cancelled by anything.

1.2. If π1(X) = 0 and H•(X) are finitely generated (resp. finite), then so are π•(X) (Coun-
terexample: X = S1∨S2.) Indeed, if both H•(F ) and H•(B) are fin.gen. (resp. finite), then
so is H•(E): clear from s.s. Now apply to

X|3
K(H2(X),1)−−−−−−−→ X|2 = X, X|4

K(H3(X3),2)−−−−−−−→ X|3, . . .

get fin.gen. (resp. finiteness) of H•(X|n), hence of H•(X|n), hence of πn(X|n).

1.3. Theorem. π•(S
2n+1) ⊗ Q is 1-dimensional in degree 2n + 1, while π•(S

2n) ⊗ Q is 1-
dimensional in degrees 2n and 4n− 1.

Proof: The E2 ⊗Q of s.s. of

S2n+1|2n+2
K(Z,2n)−−−−→ S2n+1|2n+1 = S2n+1

has columns 0, 2n+1 and rows 0, 2n, 4n, . . . Figure We have d2n+1x
k = kxk−1d2n+1x = kxk−1s,

hence E∞ = Q[0], hence H•(S2n+1|2n+2) are finite, hence π•(S
2n+1|2n+2) are finite, hence

π>2n+1(S2n+1) are finite.
In the even case the E2 ⊗Q of s.s. of

S2n|2n+1
K(Z,2n−1)−−−−−−→ S2n|2n = S2n

has columns 0, 2n and rows 0, 2n− 1. Figure Hence H•(S2n|2n+1,Q) = H•(S4n−1,Q), hence
H2n+1(S2n|2n+1) = π2n+1(S2n|2n+1) = π2n+1(S2n) is finite. Now from the fibration

S2n|2n+2
K(π2n+1(S2n),2n)−−−−−−−−−−→ S2n|2n+1

we know that the cohomology of the fiber are finite, hence H•(S2n|2n+2,Q) = H•(S2n|2n+1,Q)
for n > 1. Therefore, π2n+2(S2n|2n+2) = π2n+2(S2n) is finite, hence H•(S2n|2n+3,Q) =
H•(S2n|2n+2,Q) ⇒ . . . ⇒ H•(S2n|4n−1,Q) = H•(S2n|4n−2,Q) = . . . = H•(S2n|2n+1,Q) =
H•(S4n−1,Q), and H4n−1(S2n|4n−1,Q) = π4n−1(S2n|4n−1)⊗Q = π4n−1(S2n)⊗Q = Q.

Finally, the s.s. of

S2n|4n
K(π4n−1(S2n),4n−2)−−−−−−−−−−−−→ S2n|4n−1

implies H•(S2n|4n,Q) = Q[0], hence H≥4n(S2n|4n) are finite, hence π≥4n(S2n|4n) = π≥4n(S2n)
are finite. �
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1.4. Theorem. (A. Borel, 1953) Consider a fibration F → E → B with π1(B) = 0 and
contractible E. Then H•(B,Q) = Q[x1, . . . , xk],
deg xi = 2ri iff H•(F,Q) = ΛQ(y1, . . . , yk), deg yi = 2ri − 1 = deg xi − 1.

Follows from the Eilenberg-Moore s.s. (1962) with

Ep,q
2 = Tor

H•(B)
p,deg=q(H

•(X), H•(Y )) =⇒ H•(X ×B Y )

applied to X = E, Y = pt.
This is the s.s. of the bicomplex Bar⊗C•(B)C

•(Y ) quasiisomorphic to C•(X ×B Y ). Here
C•(?) is the singular cochain complex, and Bar is the bar-resolution of C•(X) as of C•(B)-
dg-module.

In particular, d2riyi = xi, while all the previous differentials annihilate yi. Such a homo-
morphism from the subgroup of Hn(F ) annihilated by d≤n to the quotient of Hn+1(B) mod-
ulo the image of d≤n (“partially defined multivalued homomorphism Hn(F ) → Hn+1(B)”)
is called the transgression τ .

1.5. Classifying spaces. If a topological group G acts freely on a contractible space EG,
the quotient space BG := EG/G is called the classifying space of G. For instance, K(π, 1) =
Bπ, and CP∞ = BS1. Let St(k, n,C) be the space of orthonormal collections of k vectors in
Cn equipped with a positive definite hermitian product (the Stiefel variety). We have an em-
bedding St(k, n,C) ↪→ St(k, n+ 1,C), and St(k,∞,C) := lim

n→∞
St(k, n,C). It is contractible,

and St(k,∞,C)/U(k) = Gr(k,∞,C) := lim
n→∞

Gr(k, n,C). Hence Gr(k,∞,C) = BU(k).

Given a subgroup H ⊂ G, EG/H = BH, and we get a fibration G/H → BH → BG.
Take G = U(k) ⊃ T = (S1)k = H. Then G/H = F`(Ck) is the space of complete flags
in Ck, and BH = (CP∞)k, so that H•(BH,Q) = Q[z1, . . . , zk], deg zi = 2. The normalizer
N(k) of T in U(k) is the semidirect product of T and the symmetric group Sk, and we
consider the composition BT → BN(k) → BU(k). The left arrow is an Sk-torsor, so
that H•(BN(k),Q) = H•(BT,Q)Sk ∼= Q[x1, x2, . . . , xk], deg xi = 2i. The right arrow is
a fibration with fiber F`(Ck)/Sk, and H•(F`(Ck)/Sk,Q) = H•(F`(Ck),Q)Sk . We know
that dimH•(F`(Ck),Q) = χ(F`(Ck)) = k! by the Bruhat decomposition (= Schubert cells).
It follows that H•(F`(Ck)/Sk,Q) = Q[0], and hence H•(BU(k),Q) = H•(BN(k),Q) =
Q[x1, x2, . . . , xk].

Finally, from the Borel Theorem we obtain yet another way to calculate H•(U(k),Q). It
works for any compact Lie group. For instance, for USp(k) the quotient of the normalizer
of the maximal torus by this torus (the Weyl group) is the semidirect product W = Sk nFk2
(where Fk2 acts by changing the signs of zi’s), henceH•(BT,Q)W ∼= Q[x′1, x

′
2, . . . , x

′
k], deg x′i =

4i.

1.6. Cohomological operations. They are the natural transformations O(n, q, π) from
Hn(?, π) to Hq(?, π). By Yoneda, O(n, q, π) = Hq(K(π, n), π).
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1.6.1. Example: Bockstein homomorphism. A short exact sequence 0 → Z/`Z → Z/`2Z →
Z/`Z→ 0 gives rise to a long exact sequence

. . .→ Hn(X,Z/`Z)→ Hn(X,Z/`2Z)→ Hn(X,Z/`Z)
bn−→ Hn+1(X,Z/`Z)→ . . .

In fact, bn is a generator of Hn+1(K(Z/`Z, n),Z/`Z).

1.6.2. Stability. Since the suspension Σ is left adjoint to the loops Ω, and ΩK(π, n + 1) =

K(π, n), we get Σ: Hn(X, π) ∼−→ Hn+1(ΣX, π). Stable operations Os(k, π) are those that
commute with Σ and raise the cohomological degree by k, i.e. Os(k, π) ⊂ O(n, n + k, π).
They are also compatible with l.s.e.

. . .→ Hn(X, π)
i∗−→ Hn(Y, π)

δ−→ Hn+1(X/Y, π)→ Hn+1(X)→ . . .

for a Borsuk pair (cofibration) Y
i−→ X. We only need to check that they commute with δ.

Since

X/Y ∼ Cone(i)/Cone(Y ) ∼ Cone(i)
f−→
(
X ∪i Cone(Y )

)
/X = ΣY,

the desired commutativity follows from Exercise 4. Now from Exercise 5 we see that the
stable operations commute with transgression in s.s.: if α ∈ Hn(F, π) = E0,n

2 is transgressive,
i.e. d2α = . . . = dnα = 0, and ϕ is a stable operation in Os(n, n + k, π), then ϕ(α) ∈
Hn+k(F, π) is also transgressive. Moreover, if

τ(α) := dn+1α ∈ En+1,0
n+1 = Hn+1(B, π)/(+ Im d≤n)

contains β ∈ Hn+1(B, π), then τ(ϕ(α)) 3 ϕ(β).

1.6.3. Relation with cohomology of Eilenberg-MacLane spaces. Since the suspension Σ is left
adjoint to the loops Ω, and ΩK(π, n + 1) = K(π, n), we get fn : ΣK(π, n) → K(π, n + 1),
and hence

. . .→ Hn+k(K(π, n), π)
f∗n−1−−→ Hn−1+k(K(π, n− 1), π)→ . . .→ Hk+1(K(π, 1), π),

and Os(k, π) = lim
←

of this sequence. In fact, this sequence stabilizes for n > k.

Finally,
⊕

kOs(k, π) forms a graded noncommutative ring Aπ with respect to composition.
If π = Fp, it is called the Steenrod algebra Ap (over Fp).

1.7. Steenrod squares. They are generators of A2 (so that p = 2), e.g. Sq1 = b2 is the
Bockstein homomorphism.

Construction: let en ∈ Hn(K(F2, n),F2) be the fundamental class. We set Sqnen := e2
n

(hence the name). Let n > 1. Consider the s.s. of

pt
K(F2,n−1)−−−−−−→ K(F2, n).

Figure Everything in the 0th column below e2
n−1 is transgressive, and e2

n−1 is transgressive
as well. Indeed, for dn : E0,2n−2

n → E0,n−1
n we have dn(e2

n−1) = 2en−1 · dnen−1 = 0. Hence

τe2
n−1 := d2n−1e

2
n−1 =: h ∈ E2n−1,0

2n−1 = E2n−1,0
2 = H2n−1(K(F2, n),F2)

does not vanish, and we set Sqn−1(en) := h.
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Now let n > 2. Then Sqn−2(en−1) ∈ E0,2n−3
2 is transgressive, and

Sqn−2en := τSqn−2(en−1) ∈ H2n−2(K(F2, n),F2),

and so on. Also, Sq>nen := 0. It remains to check the stability property f ∗n−1Sq
ken =

Sqken−1.
First we assume k ≤ n− 1. Since f ∗n−1 is the composition of what

ΣK(F2, n− 1) = ΣΩK(F2, n)→ K(F2, n)

induces in cohomology and of the suspension isomorphism, f ∗n−1 is inverse to the transgression
in the s.s. of

pt
K(F2,n−1)−−−−−−→ K(F2, n).

But τ(Sqken−1) = Sqken for k ≤ n− 1 by construction, hence f ∗n−1Sq
ken = Sqken−1.

Now k = n; then Sqken−1 = Sqk+1en−1 = . . . = 0 by construction, and we have to check
f ∗k−1Sq

kek = f ∗k−1e
2
k = 0. Recall that f ∗k−1 is the composition of

H•(K(F2, k),F2)→ H•(ΣK(F2, k − 1),F2)→ H•−1(K(F2, k − 1),F2).

The left map is a ring homomorphism taking ek 7→ Σek−1, and hence e2
k 7→ (Σek−1)2 = 0 by

the triviality of multiplication in the cohomology of suspension (Exercise 3).

1.7.1. H. Cartan formula. Sqk(αβ) =
∑

l+j=k Sq
lα · Sqjβ.

2. April 3rd

2.1. Commutativity of multiplication in cohomology. Recall the cellular structure
of S∞ = ES2 with two cells en± in each dimension n. It is acted upon by the antipodal
automorphism T : en± 7→ en∓. The corresponding cellular chain complex C•(S∞,F2) is acted
upon by the symmetric group S2 with generator T , and forms a free resolution P• :=
C−•(S∞,F2) of the trivial S2-module F2.

Given a complex V of F2-vector spaces, a symmetric multiplication on V is a morphism of
complexes V ⊗V ⊗P• → V that factors through the coinvariants D2(V ) := (V ⊗V ⊗P•)S2

where T acts on V ⊗ V by permutation of factors. For a CW-complex X we construct a
symmetric multiplication on the cellular cochain complex C•(X,F2).

We fix a cellular approximation ∆̃ : X → X × X of the diagonal ∆: X ↪→ X × X, and

get ∆(0) := (∆̃)∗ : C•(X ×X,F2)→ C•(X,F2). We have T ◦ ∆̃ ∼ ∆̃, hence ∆(0)T ∼ ∆(0), i.e.
there is a homotopy ∆(1) : C•(X ×X,F2)→ C•−1(X,F2) such that (note that + = − in F2)
∆(1)d+ d∆(1) = ∆(0)T + ∆(0).

Now there is a homotopy ∆(2) : C•(X ×X,F2) → C•−2(X,F2) such that ∆(2)d + d∆(2) =
∆(1)T + ∆(1), and so on: ∆(q) : C•(X × X,F2) → C•−q(X,F2) such that ∆(q)d + d∆(q) =
∆(q−1)T + ∆(q−1). This defines the desired symmetric multiplication

m : C•(X)⊗ C•(X)⊗ P• = C•(X ×X)⊗ P• → C•(X),

?⊗ eq+ 7→ ∆(q)(?), ?⊗ eq− 7→ ∆(q)T.
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2.2. Another construction of Steenrod squares. Let cn ∈ Hn(F2[−n]) be the unique
nonzero element. We have

D2(F2[−n]) =
(
(F2[−n])⊗ (F2[−n])⊗ P•

)
S2

= (F2[−2n])⊗ (P•S2
)

The latter factor is the cellular chain complex of RP∞ that has a unique nonzero homology
class xm in (homological) degree m ∈ N.

For a complex V , a class v ∈ HnV determines a homotopy class of maps η : F2[−n]→ V .
For k ≤ n, we set

Sqk(v) := the image of c2n ⊗ xn−k ∈ c2n ⊗Hn−k(RP∞,F2) ∼= Hn+kD2(F2[−n])

under the induced map

D2(F2[−n])
D2(η)−−−→ D2(V ),

and we set Sqk(v) := 0 for k > n. If V is equipped with a symmetric multiplication D2(V )→
V , we set Sqk(v) := the image of Sqk(v) under the induced map Hn+kD2(V ) → Hn+kV .
When V = C•(X,F2), we obtain Sqk : Hn(X,F2)→ Hn+k(X,F2).

2.3. Additivity. For v, v′ ∈ HnV and any k, we have

Sqk(v + v′) = Sqk(v) + Sqk(v′) ∈ Hn+kD2(V ).

In particular, if V is equipped with a symmetric multiplication, we have Sqk(v + v′) =
Sqk(v) + Sqk(v′) ∈ Hn+kV .

Indeed, for k > n we have all zeroes, and for k = n

Sqn(v + v′) = (v + v′)2 = Sqn(v) + Sqn(v′) + (vv′ + v′v).

But the multiplication V ⊗V → D2(V ) is commutative up to homotopy, so that vv′+ v′v =
2vv′ = 0.

If k < n, by functoriality it suffices to consider the universal case V = F2[−n] ⊕ F2[−n].
It reduces to the evident trivial case v = 0 or v′ = 0 by the following result. Let vi, i ∈ I, be
an ordered basis of H•V . Then {vivj, i < j} ∪ {Sqr(vi), r ≤ deg vi} is a basis of H•D2(V ).
This in turn follows by induction from

D2(V ⊕W ) ' D2(V )⊕ (V ⊗W )⊕D2(W ).

2.4. Stability. There is a canonical map φ : D2(W [−1]) → D2(W )[−1]. For W = F2[−n]
it sends c2n+2 ⊗ xm 7→ c2n ⊗ xm−1 in notation of beginning of §2.2. The following diagram
commutes:

H•(W [−1]) H•−1W

Sqk

y Sqk

y
H•+k(D2(W [−1]))

φ−−−→ H•+k−1D2(W )

Proof: Set V = W [−1]. Fix v ∈ HnV , and set w = the corresponding class in Hn−1W . By
functoriality, we may assume V = F2[−n], W = F2[1− n]. For k ≥ n, Hn+k−1D2(W ) = 0,
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so we consider k < n. Then Hn+k−1D2(W ) (resp. Hn+kD2(V )) is generated by Sqk(w) (resp.

Sqk(v)). It suffices to show that φ : HmD2(V ) ∼−→Hm−1D2(W ) for m < 2n.

Let U be the exact complex . . .→ 0→ F2w
∼−→ F2v → 0→ . . ., so that V → U → W is

a distinguished triangle (an exact triple of complexes). From the sequence V ⊗2 → U⊗2 →
W⊗2, the complex W⊗2[−1] is homotopic to . . .→ 0→ F2vw⊕ F2wv → F2v

2 → 0→ . . . So
we get a distinguished triangle V ⊗2 → W⊗2[−1] → F2

2[1 − 2n] of complexes equipped with
an S2-action. The (homotopy) coinvariants takes distinguished triangles to distinguished
triangles, so we get a distinguished triangle D2(V ) → D2(W )[−1] → F2[1 − 2n]. The

associated long exact sequence gives rise to HmD2(V ) ∼−→Hm−1D2(W ) for m < 2n. �

2.5. Stability of Steenrod squares. If a complex V carries a symmetric multiplication

D2(V ) → V , then V [−1] inherits a symmetric multiplication given by D2(V [−1])
φ−→

D2(V )[−1]→ V [−1], so we get a commutative diagram

H•+1D2(V [−1]) −−−→ H•+1(V [−1])

φ

y yo
H•D2(V ) −−−→ H•V.

Hence the canonical isomorphism H•V ∼= H•+1(V [−1]) commutes with the Steenrod squares
Sqk. In particular, if X is a pointed topological space, then the canonical isomorphism
H•(X,F2) ∼= H•+1(ΣX,F2) commutes with the action of Steenrod squares Sqk.

2.5.1. Example. Let v ∈ Hn
red(Sn,F2) be the fundamental class. Then Sqk(v) = v if k = 0,

and 0 otherwise. By stability this reduces to n = 0.
For arbitrary X, v ∈ Hn(X,F2), we have Sqk(v) = v if k = 0, and 0 if k < 0. Indeed,

since Hn(X,F2) is representable by K(F2, n), it suffices to consider the universal case X =
K(F2, n), v = en is the fundamental class. Consider the classifying map f : Sn → K(F2, n).
The induced map Hn+k(K(F2, n),F2)→ Hn+k(Sn,F2) is bijective for k ≤ 0, so we are done
by the previous example.

Note that for an arbitrary complex V the negative Steenrod squares may happen to be
nontrivial.

3. April 10th

3.1. Cartan formula. For complexes V,W we have isomorphisms

D2(V )⊗D2(W ) = (V ⊗2 ⊗ P•)S2 ⊗ (W⊗2 ⊗ P•)S2 =
(
(V ⊗W )⊗2 ⊗ (P•)⊗2

)
S2×S2

,

D2(V ⊗W ) =
(
(V ⊗W )⊗2 ⊗ P•

)
S2
.

A canonical map
(
(V ⊗W )⊗2 ⊗P•

)
S2
→
(
(V ⊗W )⊗2 ⊗ (P•)⊗2

)
S2×S2

given by the diagonal

embedding of S2 into S2 × S2 induces

ψ : D2(V ⊗W )→ D2(V )⊗D2(W ).
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3.1.1. Proposition. Let v ∈ HmV, w ∈ HnW , so that v⊗w ∈ Hm+n(V ⊗W ). Then for any
k ∈ Z we have

ψSqk(v ⊗ w) =
∑
l+j=k

Sql(v)⊗ Sqj(w) ∈ Hm+n+k(D2(V )⊗D2(W )).

(The sum is actually finite.)
Proof: If k > m+ n both sides vanish. If k = m+ n− i, we rewrite

ψSqm+n−i(v ⊗ w) =
∑

i′+i′′=i

Sqm−i
′
(v)⊗ Sqn−i′′(w), i′, i′′ ∈ N.

By functoriality we may assume V = F2[−m], W = F2[−n]. Then in notation of beginning
of §2.2, H•D2(V ) ∼= F2c2m ⊗ x2m−•,

H•D2(W ) ∼= F2c2n ⊗ x2n−•, H
•D2(V ⊗W ) ∼= F2c2m+2n ⊗ x2m+2n−•, and

Sqm+n−i(v ⊗ w) = c2m+2n ⊗ xi, Sqm−i
′
(v) = c2m ⊗ xi′ , Sqn−i

′′
(w) = c2n ⊗ xi′′ .

The map ψ corresponds to the coproduct

∆: H•(RP∞,F2)→ H•(RP∞,F2)⊗H•(RP∞,F2).

Since H•(RP∞,F2) = F2[t], deg t = 1, and xj is dual to tj, the coproduct is ∆(xi) =∑
i′+i′′=i xi′ ⊗ xi′′ . Finally,

Sqm+n−i(v ⊗ w) = c2m+2n ⊗ xi 7→
∑

i′+i′′=i

(c2m ⊗ xi′)⊗ (c2n ⊗ xi′′) = Sqm−i
′
(v)⊗ Sqn−i′′(w).

3.1.2. Very symmetric multiplication. Generalizing the case of 2 factors, we may consider
Dn(V ) := (V ⊗n ⊗P•n)Sn , where P•n is a free resolution of the trivial Sn-module F2. There is
a canonical map ϕ : Dm(Dn(V ))→ Dmn(V ) since the LHS is represented by(

(V ⊗n ⊗ P•n)⊗mSn ⊗ P
•
m

)
Sm
∼ (V ⊗mn ⊗Q•)SmnSmn ,

where Q• is a free resolution of the trivial Sm oSn-module F2. The RHS is (V ⊗mn⊗P•mn)Smn ,
and ϕ is induced by the embedding Sm o Sn ↪→ Smn.

A symmetric multiplication m : D2(V ) → V is called very symmetric if there is a map
m′ : D4(V )→ V such that the following diagram commutes:

D2(D2(V ))
D2(m)−−−−→ D2(V )

ϕ

y m

y
D4(V )

m′−−−→ V.

(The cellular cochain complex V = C•(X,F2) has a very symmetric multiplication (as any
E∞-algebra), see e.g. arXiv:0106024, §2).
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Then the following diagram commutes up to homotopy:

D2(V ⊗ V ) −−−→ D2(D2(V ))
D2(m)−−−−→ D2(V )

m−−−→ V

ψ

y ∥∥∥
D2(V )⊗D2(V )

m⊗m−−−→ V ⊗ V −−−→ D2(V )
m−−−→ V.

So passing to cohomology and applying the above Proposition, we obtain the Cartan for-
mula 1.7.1. In other words, the total Steenrod square Sq(x) :=

∑
n≥0 Sq

n(x) is a multiplica-
tive operation.

3.1.3. Corollary. Recall H•(RP∞,F2) = F2[τ ]. We have Sqk(τn) =
(
n
k

)
τn+k.

Proof: deg τ = 1 ⇒ Sqn(τ) = 0 for n > 1, and Sq1(τ) = τ 2. Hence the total Steenrod
square Sq(τ) = Sq0(τ) + Sq1(τ) = τ + τ 2. By multiplicativity, Sq(τn) = (τ + τ 2)n =∑

0≤k≤n
(
n
k

)
τn+k. �

3.2. Odd primes. We consider the complexes of Fp-vector spaces. Contrary to 3.1.2 we
denote by P•p a free resolution of the trivial Sp-module Fp (as opposed to F2). We define
Dp(V ) := (V ⊗p ⊗ P•p )Sp . A symmetric multiplication on a complex V is a morphism of
complexes Dp(V ) → V . The cochain complex of a topological space C•(X,Fp) can be
equipped with a symmetric multiplication.

Similarly to 2.2, any homology class in Hr(Sp,Fp) defines a cohomological operation
Hn(V ) → Hpn−rV . If n = 2m, and r = 2(p − 1)(m − i), the homological class dual to
t(p−1)(m−i) ∈ H2(p−1)(m−i)(Sp,Fp) (see Exercise 4) defines an operation P i = St2(p−1)i in-
creasing cohomological degree by 2(p − 1)i. In particular, Pm on H2mV is nothing but
raising to p-th power. These operations are extended to odd cohomology by stability (or
else one can use the homological classes dual to t(p−1)jtp−2τ to handle the odd degrees).
For the cochain complexes of topological spaces, these operations together with the Bock-
stein homomorphism βp generate the Steenrod algebra Ap. The Cartan formula holds true:
P k(xy) =

∑
l+j=k P

l(x)P j(y). Also, βp(xy) = βp(x)y + (−1)deg xxβp(y).

For the unification of notation, in case p = 2 we set P n := Sq2n. In fact, already
βp, P

1, P p, P p2 , P p3 , . . . generate Ap.

3.3. Comultiplication in the Steenrod algebra. Since the cohomology Hk(X,Fp) is
represented by the Eilenberg-Maclane space K(Fp, k), the supercommutative multiplication
on cohomology gives rise to multiplication K(Fp, l)×K(Fp, j)→ K(Fp, l + j). This in turn
induces a coproduct on the cohomology of Eilenberg-Maclane spaces, and gives rise to a
supercocommutative Hopf algebra structure on Ap. For an operation θ ∈ Ap the coproduct
∆θ =

∑
θ′i ⊗ θ′′i ∈ Ap ⊗ Ap satisfies

θ(xy) =
∑

(−1)deg θ′′i deg xθ′i(x)θ′′i (y).
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In particular, ∆βp = βp ⊗ 1 + 1 ⊗ βp, ∆P k =
∑

l+j=k P
l ⊗ P j. The dual Hopf algebra

A∨p = Hom(Ap,Fp) is called the Milnor algebra: a supercommutative graded algebra with a
non-cocommutative coproduct.

3.3.1. Theorem (Milnor, 1958). A∨p ' ΛFp(τ0, τ1, . . .) ⊗ Fp[ξ1, ξ2, . . .], where ξn is the lin-

ear dual of P pn−1
P pn−2 · · ·P pP 1, and τn is the linear dual of P pn−1

P pn−2 · · ·P pP 1βp. The
coproduct is given by

µ(ξn) =
∑
i+j=n

ξi ⊗ ξp
i

j , µ(τn) = 1⊗ τn +
∑
i+j=n

τi ⊗ ξp
i

j ,

(we set ξ0 = 1).

4. April 17th

4.1. Group automorphisms of the additive supergroup. In this section p is odd. We
set Λ := ΛFp(ε), deg ε = −1. We view the algebra H•(L∞p ,Λ) (see Exercise 3, April 10th) as

the algebra Λ[A1|1
Fp ] of Λ-valued functions on the superline A1|1

Fp with coordinates t, deg t = 2,

and τ, deg τ = 1. The Steenrod algebra Ap acts by cohomological operations on H•(L∞p ,Λ)

(more precisely, a(x + εy) := a(x) + (−1)deg aεa(y)). Composing with coproduct ∆: Ap →
Ap⊗Ap, one can take tensor product of Hopf algebra modules, so Ap acts on H•((L∞p )×n,Λ)
for any n. This action is effective for n → ∞, and thus Ap is realized in endomorphisms of
something that we presently describe.

We will consider the Λ-valued functions Λ[[t, τ ]] on the formal neighbourhood of the origin

Â1|1
Fp in A1|1

Fp , that is formal Taylor series with topological Λ-basis tnτ s, n ∈ N, s = 0, 1. We
have

f(t+ t1, τ + τ1) =
∑

tn1τ
s
1 ∆n,sf(t, τ),

where ∆n,s = 1
n!

∂n

∂tn
∂s

∂τs
is a continuous Λ-linear endomorphism of Λ[[t, τ ]]. The algebra

End(Λ[[t, τ ]]) of all continuous Λ-linear endomorphisms of Λ[[t, τ ]] (not respecting the algebra
structure!) is described in Exercise 5 (April 10th). Its multiplicative group contains the sub-
group Aut(Λ[[t, τ ]]) of automorphisms respecting the algebra structure, i.e. automorphisms of

the formal neighbourhood Â1|1
Fp of the origin of our superline.

Moreover, there is an evident structure of the supergroup G1|1
a on A1|1

Fp , and we can consider

the automorphisms of the formal supergroup Ĝ1|1
a (i.e. the automorphisms of Â1|1

Fp respecting

the addition operation). Furthermore, among those we can consider the ones that act trivially

on the associated graded of the filtration of its Lie algebra arising from Ĝa ⊂ Ĝ1|1
a . A typical

automorphism like this ϕ̄ ∈ Aut(Λ[[t, τ ]]) acts as

(1) ϕ̄(t) = t+
∑
i≥1

ξ̄it
pi , ϕ̄(τ) = τ +

∑
i≥0

τ̄it
pi

for certain ξ̄i ∈ Λ0, τ̄i ∈ Λ−1. Such automorphisms form a subgroup Autp(Λ[[t, τ ]]) ⊂
Aut(Λ[[t, τ ]]).
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4.2. Coaction of A∨p on Λ[[t, τ ]] (Buchstaber, 1978). We consider the Λ-algebra H :=

Λ ⊗ A∨p with free polynomial generators ξ1, ξ2, . . . , deg ξi = −2(pi − 1) and free exterior

generators τ0, τ1, . . . , deg τi = −2pi + 1. We have a coaction ring homomorphism

ϕ : Λ[[t, τ ]]→ H⊗Λ Λ[[t, τ ]], t 7→ t+
∑
i≥1

ξit
pi , τ 7→ τ +

∑
i≥0

τit
pi

(the universal automorphism of Ĝ1|1
a acting trivially on the associated graded of the filtration

of its Lie algebra arising from Ĝa ⊂ Ĝ1|1
a ) and the composition (of universal automorphisms)

ring homomorphisms

Λ[[t, τ ]]
ϕ1−→ H⊗Λ Λ[[t, τ ]]

Id⊗ϕ2−−−−→ H⊗Λ (H⊗Λ Λ[[t, τ ]]),

t 7→ ϕ1(t) = t+
∑
i≥1

ξ1,it
pi 7→ ϕ2(t) +

∑
i≥1

ξ1,iϕ2(t)p
i

= t+
∑
n≥1

( ∑
i+j=n

ξ1,i ⊗ ξp
i

2,j

)
tp
n

,

τ 7→ ϕ1(τ) = τ +
∑
i≥0

τ1,it
pi 7→ ϕ2(τ) +

∑
i≥0

τ1,iϕ2(t)p
i

= τ +
∑
n≥0

(
1⊗ τ2,n +

∑
i+j=n

τ1,i⊗ ξp
i

2,j

)
tp
n

,

where ξ1,0 = ξ2,0 = 1 ∈ Λ0.
It follows that the ring homomorphism µ : A∨p → A∨p ⊗A∨p of 3.3.1 equips A∨p with a struc-

ture of Hopf algebra, and ϕ equips Λ[[t, τ ]] with a structure of H = Λ⊗ A∨p -comodule. Note
that Ap = (A∨p )∨ = Homeven(A∨p ,Λ) = Homeven

Λ (H,Λ) (restricted dual). Hence we obtain an

embedding γ : Autp(Λ[[t, τ ]]) ↪→ Â×p into the multiplicative group Â×p of the completed Steen-

rod algebra Âp. Its image consists of all the linear maps in Ĥomeven(A∨p ,Λ) (nonrestricted
dual) that are algebra homomorphisms.

4.3. Action of Ap on Λ[[t, τ ]]. We write down explicit formula for the action of Ap on
Λ[[t, τ ]] dual to the coaction of A∨p on Λ[[t, τ ]]. For a sequence I = (s0, n1, s1, . . . , nk, sk, 0, . . .)

we set (ξ, τ)I = τ s00 ξ
n1
1 τ s11 · · · ξ

nk
k τ

sk
k . These monomials form a basis of Fp-vector space A∨p .

We denote by PI ∈ Ap the dual basis element. In particular, we will have the Bockstein
βp = P(1,0,...), and the Steenrod powers P n = P(0,n,0,0,...). Any element a ∈ Ap can be written
as
∑
a(ξ,τ)IPI , where a(ξ,τ)I ∈ Λ, and deg a(ξ,τ)I ≡ deg(ξ, τ)I (mod 2). We will also need the

completed algebra Âp with topological basis {PI}. The embedding

γ : Autp(Λ[[t, τ ]]) ↪→ Â×p

takes ϕ̄ ∈ Autp(Λ[[t, τ ]]) with parameters ξ̄i, τ̄i (see (1)) to γ(ϕ̄) =
∑

(ξ̄, τ̄)IPI ∈ Ap.
If we set ϕ̄P (t) = t+ tp, ϕ̄P (τ) = τ , and ϕ̄β(t) = t, ϕ̄β(τ) = τ + εt, then

γ(ϕ̄P ) = 1 +
∑
n>0

P n, γ(ϕ̄β) = 1 + βp.

By Taylor expansion, for f(t, τ) ∈ Λ[[t, τ ]] we have

ϕ̄P (f(t, τ)) = f(t+ tp, τ) =
∑
n≥0

tpn∆n,0f(t, τ),
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ϕ̄β(f(t, τ)) = f(t, τ + εt) = f(t, τ) + εt∆0,1f(t, τ),

so that ϕ̄P =
∑

n≥0 t
pn∆n,0, ϕ̄β = Id +εt∆0,1.

Looking at the composition

Autp(Λ[[t, τ ]])
γ−→ Â×p ↪→ Âp

ρ−→ End(Λ[[t, τ ]])

we conclude that

ρ(P n) = tpn∆n,0 = tpn
1

n!

∂n

∂tn
, ρ(βp) = εt

∂

∂τ
.

And this is nothing but the action of Ap on H•(L∞p ,Λ).

4.4. Thom isomorphism (1952). Given a vector bundle V → B of rank n we choose a
fiberwise metric and consider the corresponding sphere bundle S(V)→ B bounding the disc
bundle D(V) → B. The Thom space Th(V) is the quotient D(V)/S(V). If B is compact,
this is the one point compactification of V . We make one of the following two assumptions:
either the coefficient ring of cohomology is F2, or V is oriented (i.e. ΛnV \B has 2 connected
components, and we choose one of them) (and then the coefficient ring of cohomology is
arbitrary). Then there is a unique Thom class tV ∈ Hn(Th(V)) such that
(a) the restriction of tV to any fiber Dn/Sn−1 ' Sn is the generator h of Hn(Sn).
(b) For any i ∈ N, the product with tV gives the Thom isomorphism Φ:

H i(B) = H i(D(V))
∼−−→

tV ·?
Hn+i(D(V), S(V)) = Hn+i(Th(V))

(in particular, tV = Φ(1)).
Indeed, consider the fiberwise quotient E := D(V)/BS(V) (a sphere bundle over B with a

canonical section s : B → E such that Th(V) = E/s(B)). The Gysin sequence of E p→ B:

. . .→ Hn+i(B)
p∗−→ Hn+i(E)→ H i(B)→ . . .

is split by s∗, so thatHn+i(E) = Hn+i(B)⊕H i(B), and the relative cohomologyHn+i(Th(V)) =
Hn+i(E/s(B)) = Hn+i(E , s(B)) ∼= H i(B). By the construction of Gysin sequence, the latter

H i(B) is actually the Ei,n
2 = H i(B)⊗Hn(Sn) term of the spectral sequence of E p→ B. We

set tV := 1 ⊗ h ∈ H0(B) ⊗ Hn(Sn) (or rather its image in E∞), and we are done by the
multiplicativity of spectral sequence.

4.5. Stiefel-Whitney characteristic classes (1935-1936). Now we consider the coho-
mology with coefficients in F2. We set wi(V) := Φ−1SqiΦ(1) ∈ H i(B,F2). The total Stiefel-
Whitney class is w(V) :=

∑
iwi(V). They enjoy the following basic properties.

4.5.1. Dimension. w0(V) = 1, and w>n(V) = 0 for rkV = n.
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4.5.2. Naturality. Consider a cartesian diagram

V ′ f−−−→ Vy y
B′

f−−−→ B

Then wi(V ′) = f ∗wi(V). Indeed, by Exercise 2, the Thom isomorphism is natural: Φ′f ∗ =
f ∗Φ.

4.5.3. Whitney product formula. wk(V1 ⊕ V2) =
∑

l+j=k wl(V1)wj(V2); in other words, the

total class w(V1 ⊕ V2) = w(V1)w(V2). Indeed, for vector bundles V1 → B1, V1 → B2 over
different bases (later on we will set B1 = B2 = B), we have

ΦV1×V2(w(V1 × V2)) = Sq(tV1×V2) = Sq(tV1 ⊗ tV2) = Sq(tV1)⊗ Sq(tV2)

by Cartan formula. The RHS is

ΦV1(w(V1))⊗ ΦV2(w(V2)) = ΦV1×V2(w(V1)⊗ w(V2))

by Exercise 2. Applying Φ−1
V1×V2 we obtain w(V1×V2) = w(V1)⊗w(V2). Now set B1 = B2 = B

and restrict to the diagonal ∆B ⊂ B ×B.

4.5.4. Normalization. Let O(−1) = S1 be the tautological line bundle over RP1. Then
w1(S1) is the unique nonzero element τ ∈ H1(RP1,F2). Indeed, the disc bundle D(S1) is the
Möbius band M bounded by the circle ∂M . On the other hand, M is homeomorphic to the
closure of RP2 \D2. We get H•(M,∂M) = H•(RP2, D2). Hence the natural isomorphisms

H1(Th(S1)) = H1(D(S1), S(S1)) = H1(M,∂M)
∼←− H1(RP2, D2)

∼−→ H1(RP2).

Hence the Thom class tS1 ∈ H1(Th(S1),F2) corresponds to the generator τ ∈ H1(RP2,F2),
and Sq1(tS1) = t2S1 corresponds to Sq1(τ) = τ 2 6= 0. Hence w1(S1) = Φ−1Sq1(tS1) 6= 0.

5. April 24th

5.1. Principal G-bundles. A principal G-bundle or a G-torsor E p→ B is a space E
equipped with a fiberwise right G-action simply transitive on each fiber of p. For example,
given a k-vector bundle V → B of rank n, the space E of fiberwise bases is a GL(n, k)-torsor

over B. Conversely, V = E
GL(n,k)

× kn is the associated vector bundle (here k = R,C,H). If a
vector bundle is equipped with a metric, and we consider the space of orthonormal fiberwise
bases, we obtain a principal O(n)-bundle (or a principal U(n)-bundle).

We will only consider locally trivial bundles. They can be specified by a covering B =
⋃
Uα

and transition functions ϕαβ : Uα ∩ Uβ → G.
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5.1.1. Lemma. Let E p→ B×I be a G-torsor over the product of compact B with the interval
I = [0, 1]. Suppose G is a Lie group. Then E|B×0 ' E|B×1.

Proof: We may assume Uα = Vβ × (ak, ak+1) where B =
⋃
Vβ, and I =

⋃
(ak, ak+1).

This reduces the problem to the case (ak, ak+1) = [0, 1]. So we have the transition functions
ϕγβ(x, t) : (Vγ ∩ Vβ) × I → G. We may also assume that ϕγβ extends continuously to the
closure V γ∩V β, and hence it is uniformly continuous. Hence there is an open neighbourhood
e ∈ U ⊂ G such that U ' Rr (where r = dimG) and ϕγβ(x, t1)ϕ−1

γβ (x, t2) ∈ U ∀t1, t2 ∈ I.
Moreover, we may assume that U · · ·U ⊂ G (3N -fold product, where N is the number of
charts Vβ) is also isomorphic to Rr.

We will construct functions hβ : Vβ → G, 1 ≤ β ≤ N , by induction in β. We start with
h1(x) ≡ e. We set h2(x) := ϕ−1

12 (x, 1)ϕ12(x, 0) on V 1 ∩ V 2 and extend it to V2 with values
in U · U ' Rr. Now hβ(x) := ϕ−1

γβ (x, 1)hγ(x)ϕγβ(x, 0) on V γ ∩ V β for γ < β. It matches
on triple intersections by induction assumption, and takes values in U · · ·U ' Rr (3β-fold
product). So it can be extended to the whole of Vβ with values in U · · ·U ' Rr.

Thus ϕγβ(x, 1) = hγ(x)ϕγβ(x, 0)h−1
β (x), and hence E|B×0 ' E|B×1. �

5.1.2. Corollary. Any G-torsor over a disc Dn is trivial.
Proof: Consider its pullback to Dn × I → Dn, (x, t) 7→ tx. �

5.2. Classifying spaces. Theorem. Any G-torsor E p→ B over a CW-complex B is iso-
morphic to a pullback of EG → BG for an appropriate φ : B → BG. The pullbacks φ∗1EG
and φ∗0EG are isomorphic if and only if φ1, φ0 : B → BG are homotopic.

Proof: We have to construct a G-equivariant map F : E → EG by induction in skeleta
of B. Suppose it is constructed for E|skn−1B, and we want to extend it through a cell
χα : Dn → enα ⊂ B. The pullback χ∗αE is trivial. Since χα(Sn−1) ⊂ skn−1B, the existing
Fn−1 gives an equivariant map Fn−1(x, g) = Fn−1(x, 1)g ∈ EG, x ∈ Sn−1, g ∈ G.

Since πn−1(EG) = 0, the map Fn−1(x, 1) extends to Fn(x, 1) : Dn → EG. We set
Fn(x, g) = Fn(x, 1)g, and thus add all the n-cells one by one.

The second claim follows if we replace B by B× I, and skn−1B by B×{0} ∪B×{1}. �

Thus, the isomorphism classes of G-torsors over a CW-complex B are in a natural bijection
with Ho(B,BG).

5.2.1. Vector bundles. Recall that BGL(n, k) = Gr(n,∞, k). The classifying map φ : B →
Gr(n,∞, k) for the GL(n, k)-torsor corresponding to a vector bundle V p→ B, is obtained
from an embedding V ↪→ B × kN for N � 0. To construct this embedding for a compact
B choose a trivializing covering B =

⋃
Uα, inscribe a finer covering Vα ⊂ Uα such that

V α ⊂ Uα and a still finer covering Wα ⊂ Vα such that Wα ⊂ Vα. Pick a continuous function
fα : B → k such that fα|Wα

≡ 1 and fα|B\Vi ≡ 0.
Let qα : V|Uα → kn be the trivializing projection. Set q′α(v) = fα(p(v))qα(v) if v ∈ p−1(Uα),

and q′α(v) = 0 otherwise. Finally, Q := (p, q′α) : V → B ×
⊕

α k
n is the desired embedding.
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5.3. Cohomology ring of Grassmannian. Theorem. The cohomology ring of the
Grassmannian H•(Gr(n,∞,R),F2) = F2[w1(Sn), . . . , wn(Sn)], where Sn is the tautological
n-dimensional vector bundle over the Grassmannian.

Proof: First, there are no relations between wi(Sn). Otherwise, since Sn is the universal
bundle, such a relation would be universal (by naturality of Stiefel-Whitney classes). But

H•((RP∞)×n,F2) = F2[τ1, . . . , τn], and w(S(1)
1 ⊕ . . . ⊕ S(n)

1 ) = (1 + τ1) · · · (1 + τn), hence

wi(S(1)
1 ⊕ . . . ⊕ S

(n)
1 ) is the elementary symmetric polynomial ei(τ1, . . . , τn). And there are

no relations between these guys.
By Exercise 2, dimHk(Gr(n,∞,R),F2) equals the dimension of k-th graded component

of F2[w1(Sn), . . . , wn(Sn)], and we are done. �

Thus for a vector bundle V → B and the corresponding classifying map φ : B → Gr(n,∞,R)
the Stiefel-Whitney classes wi(V) are the pullbacks φ∗wi(Sn) of the canonical generators of
the cohomology ring H•(Gr(n,∞,R),F2).

6. May 1st

6.1. Obstructions. Given a real vector bundle V → B of rank n, we choose a metric and
consider the corresponding O(n,R)-torsor E → B. The group O(n,R) acts on the Stiefel
variety St(k, n,R), and we consider the associated bundle

StV(k, n,R) := E
O(n,R)

× St(k, n,R)→ B.

Similarly to Exercises of 06.03.2020, there are obstruction classes in Hr+1(B, πr(St(k, n,R)))

to constructing sections of StV(k, n,R), i.e. k-tuples of orthonormal sections of V . Here
πr(St(k, n,R)) is a local system on B with stalks πr(St(k, n,R)).

6.1.1. Lemma. a) πr(St(k, n,R)) = 0 for r < n − k; b) πn−k(St(k, n,R)) = Z if k = 1 or
n− k is even, and Z/2Z otherwise.

Proof: We proceed by simultaneous induction in n, k starting with St(1, n,R) = Sn−1.
Consider the fibration projecting to the first vector

(2) St(k, n,R)
St(k−1,n−1,R)−−−−−−−−→ Sn−1

and the long exact sequence

. . .→ πr+1(Sn−1)→ πr(St(k − 1, n− 1,R))→ πr(St(k, n,R))→ πr(S
n−1)→ . . .

If r < n− 2, the middle arrow is an isomorphism, and we are done for k > 2 by induction.
If k = 1, then St(k, n,R) = Sn−1. If k = 2, and r = n − 2, then the above sequence takes
form

. . .→ Z→ Z→ πn−2(St(2, n,R))→ 0,

and we need to prove that the left arrow is 1 + (−1)n−1. The fibration (2) is the fibration

of unit tangent vectors T1S
n−1 Sn−2

−→ Sn−1. We take the identity spheroid Dn−1/Sn−2 =

Sn−1 Id−→ Sn−1 and lift it to T1S
n−1 so that the boundary Sn−2 ⊂ Dn−1 goes to a fiber Sn−2.
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To this end we need a vector field on Sn−1 with one singular point. There is a vector field
with two singular points (the gradient flow from the north pole to the south pole). It follows
that for a vector field with a unique singular point the index at this point is 1 + (−1)n−1. �

Thus the first nontrivial obstruction lies in Hn−k+1(B, πn−k(St(k, n,R))), and the corre-

sponding local system has stalks Z or Z/2Z. For unification we reduce modulo 2 in both
cases; then the local systems become trivial, and we obtain the reduced obstruction classes
oi(V) ∈ H i(B,F2).

6.2. Theorem. oi(V) = wi(V).
Proof: Due to naturality of both theories, it suffices to consider the universal case Sn →

Gr(n,∞,R). Then oi(Sn) = fi(w1(Sn), . . . , wi(Sn)) = f ′i(w1(Sn), . . . , wi−1(Sn)) + λwi(Sn),
where λ ∈ F2. First, we claim f ′i = 0. Indeed, consider an auxiliary vector bundle V =
Si−1 ⊕ Rn−i+1 → Gr(i − 1,∞,R). This vector bundle has n − i + 1 orthonormal sections
for trivial reasons, hence the obstruction oi(V) ∈ H i(Gr(i − 1,∞,R),F2) must vanish. But
oi(V) = f ′(w1(Si−1), . . . , wi−1(Si−1))+0, and since w1(Si−1), . . . , wi−1(Si−1) are algebraically
independent, f ′ ≡ 0.

It remains to prove λ = 1, i.e. oi(V) does not vanish identically. We start with i = n. We
take V = Qn → RPn (the universal quotient bundle): its fiber over a point of RPn represented
by a point u ∈ Sn ⊂ Rn+1 is the orthogonal hyperplane u⊥. A section u 7→ u0 − (u0, u)u
vanishes at a unique point represented by u0. If we take u0 in the middle of the unique
n-cell of RPn, then we obtain a section over skn−1 RPn, and the obstruction to its extension
associates to the n-cell the generator of πn−1S

n−1 = Z (reduced modulo 2). So it does not
vanish, and λ = 1.

If i < n, we take V = Qi⊕Rn−i → RPi and compare with the description of the generator
of πi−1 St(n− i+ 1, n,R) in Lemma 6.1.1 to deduce λ = 1.

In other words, the first obstruction to the existence of sections in the above cases hap-
pens to be the last one, and its vanishing would imply the existence of sections that would
contradict the nontriviality of wi(V). �

7. May 8th

7.1. Stiefel-Whitney classes of the tangent bundle. We will use the Poincaré du-
ality for smooth compact manifolds with coefficients in F2. In particular, the isomor-
phism D : H•(M,F2) ∼−→HdimM−•(M,F2). The fundamental class of a smooth submanifold
M ′ ⊂ M will be denoted [M ′] ∈ HdimM ′(M,F2). The tubular neighbourhood of M ′ in M
is isomorphic to the disc bundle D(NM ′/M) of the normal bundle of M ′ in M . Hence the
Thom space Th(NM ′/M) is isomorphic to the quotient of a tubular neighbourhood mod-
ulo its boundary, and H•(Th(NM ′/M)) = H•(M,M \M ′). The image of the Thom class

tNM′/M ∈ H
codimM M ′(Th(NM ′/M)) = HcodimM M ′(M,M \M ′) in HcodimM M ′(M) is the funda-

mental class D[M ′].
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The fundamental class of the diagonal

D[∆M ] =
∑

ξi ⊗ ξ∗i ∈ HdimM(M ×M,F2),

the sum is taken over a homogeneous basis of H•(M), and {ξ∗i } is the dual basis (with
respect to the Poincaré duality).

The slant product H i+j(M×N)⊗Hj(N)→ H i(M), ξ⊗η 7→ ξ/η arises from the Künneth
formula and the usual pairing. In particular, D[∆M ]/[M ] = 1.

The tangent bundle TM is isomorphic to the normal bundle N∆M/M×M , and so the disc
bundle of the tangent bundle is isomorphic to a tubular neighbourhood of diagonal in M×M .
Hence the Thom space Th(TM) is isomorphic to the quotient of a tubular neighbourhood
modulo its boundary, and H•(Th(TM)) = H•(M ×M,M ×M \ ∆M). The image of the
Thom class tTM ∈ HdimM(Th(TM)) = Hn(M ×M,M ×M \∆M) in HdimM(M ×M) is the
diagonal class D[∆M ]. By definition, Sqi(tTM) = (wi(TM)⊗ 1) · tTM , hence Sqi(D[∆M ]) =
(wi(TM) ⊗ 1) · D[∆M ]. Since the slant product commutes with the left multiplication by
H•(M), we get

(3) Sqi(D[∆M ])/[M ] =
(
(wi(TM)⊗1)·D[∆M ]

)
/[M ] = wi(TM)·(D[∆M ]/[M ]) = wi(TM).

7.1.1. Corollary. If M1 and M2 are homotopy equivalent (in particular, the cohomology
rings are isomorphic H•(M1,F2) ∼= H•(M2,F2)), then wi(TM1) = wi(TM2), i.e. the Stiefel-
Whitney classes of the tangent bundle are independent of a choice of a smooth structure.

7.1.2. Wu formula. Note that the total Steenrod square Sq is an automorphism of the ring
H•(M,F2). We will denote Sqinv the inverse automorphism. Then for any homology class
h ∈ H•(M,F2),

〈Sqinvw(TM), h〉 = 〈Sq(Dh), [M ]〉.
Indeed, let n = dimM , and define vMi ∈ H i(M,F2) by the identity 〈vMi · ξ, [M ]〉 =
〈Sqi(ξ), [M ]〉 for any ξ ∈ Hn−i(M,F2). Set vM = 1 + vM1 + . . . + vMn . Then 〈vM · ξ, [M ]〉 =
〈Sq(ξ), [M ]〉. In particular, 〈Sq(Dh), [M ]〉 = 〈vM · Dh, [M ]〉 = 〈vM , h〉. We have to check
w(TM) = Sq(vM). But

vM =
∑

ξi〈vM · ξ∗i , [M ]〉 =
∑

ξi〈Sq(ξ∗i ), [M ]〉, hence

Sq(vM) =
∑

Sq(ξi)〈Sq(ξ∗i ), [M ]〉 =
∑

(Sq(ξi)⊗Sq(ξ∗i ))/[M ] = Sq(D[∆M ])/[M ]
(3)
= w(TM).

7.2. Stiefel theorem. The tangent bundle of an orientable compact 3-dimensional manifold
is trivial.

Proof: It suffices to construct two linearly independent vector fields on M , i.e. a section of
StTM(2, 3,R)→M . Since St(2, 3,R) = RP3, we have π1(St(2, 3,R)) = Z/2Z, π2(St(2, 3,R)) =
0. The first obstruction to the existence of our section is w2(TM) ∈ H2(M,F2). If it van-
ishes, the next obstruction vanishes as well, and the desired section exists. So it remains to
compute w2(TM).

The Bockstein homomorphism Sq1 = β2 : H2(M,F2)→ H3(M,F2) is defined as the com-
position H2(M,Z/2Z) → H3(M,Z) → H3(M,Z/2Z). The middle group is Z since M is
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orientable, hence the left arrow vanishes, and Sq1 ≡ 0: H2(M,F2) → H3(M,F2). More-
over, Sq2 ≡ 0: H1(M,F2) → H3(M,F2) and Sq3 ≡ 0: H0(M,F2) → H3(M,F2) for degree
reasons. Hence 〈Sq(Dh), [M ]〉 = 0 for degDh < 3, and hence 〈Sqinvw(TM), h〉 = 0 for
deg h > 0. We conclude that Sqinvw(TM) ∈ H0(M,F2), and hence w(TM) ∈ H0(M,F2),
and finally w2(TM) = 0. �

7.3. Chern classes. We know from §1.5 that BU(k) = Gr(k,∞,C), and H•(BU(k),Q) ⊂
H•(B(S1)k,Q) = Q[z1, . . . , zk] is the subalgebra of symmetric polynomials generated by the
elementary symmetric polynomials e1, . . . , ek. In fact, H•(BU(k),Z) = Z[e1, . . . , ek]. For a
complex rank k vector bundle V → B with the classifying map φ : B → BU(k), the Chern

classes are defined as ci(V) := φ∗ei, c0 = 1. The total Chern class c(V) =
∑k

i=0 ci(V). We
have c(V ⊕ V ′) = c(V) · c(V ′) since

em(z1, . . . , zk, zk+1, . . . , zk+l) =
∑
i+j=m

ei(z1, . . . , zk)ej(zk+1, . . . , zk+l).

7.4. (Semi)-infinite Grassmannian. The union lim
k→∞

Gr(k,∞,C) =: Gr(∞, 2∞,C) is an

H-space with respect to the direct sum. So its cohomology is a Hopf algebra Q[e1, e2, . . .]
with comultiplication ∆(ei) = ei ⊗ 1 + 1⊗ ei.

More precisely, consider a category C of C-vector spaces (of finite or countable dimension)
equipped with positive definite hermitian form; the morphisms are isometric embeddings. For
V ∈ C , dimV = k, we set B(V ) := Gr(k, V ⊗C∞). For f : V → W and P ∈ Gr(k, V ⊗C∞)
we set B(f)(P ) := (f ⊗ IdC∞)(P )⊕ f(V )⊥⊗ y1 ∈ B(W ), where y1 = (1, 0, 0, . . .) ∈ C∞. We
get a functor from the category of finite dimensional hermitian spaces to topological spaces.

If W is of countable dimension, then we set B(W ) :=
dimV <∞⋃
V⊂W

B(V ). We get a functor B

from C to topological spaces. Clearly, B(Ck) = BU(k), B(C∞) = BU(∞). We define a
monoidal structure ⊕ : B(V ) × B(W ) → B(V ⊕W ) first for finite dimensional V,W , and
then for arbitrary V,W ∈ C as the direct limit. We get ⊕ : B(C∞)×B(C∞)→ B(C∞⊕C∞).

Now compose it with B(f) for an isometry f : C∞ ⊕C∞ ∼−→C∞ to get the desired product
BU(∞) × BU(∞) → BU(∞). All the required properties follow from the fact that the
space of isometries C∞ ↪→ C∞ is contractible. This in turn follows from the contractibility
of Isom(Ck,C∞) = St(k,∞,C).

8. May 15th

8.1. Rational cohomology of real Grassmannians. Theorem. (a) There is an isomor-
phism H•(Gr+(2n,∞,R),Q) ' Q[p1, p2, . . . , pn−1, eu2n], where deg pi = 4i, deg eu2n = 2n;

(b) H•(Gr+(2n+ 1,∞,R),Q) ' Q[p1, p2, . . . , pn], where deg pi = 4i;
(c) The standard embedding Gr+(2n,∞,R) ↪→ Gr+(2n+ 1,∞,R) induces the homomor-

phism pi 7→ pi, 1 ≤ i ≤ n−1, and pn 7→ eu2
2n. The standard embedding Gr+(2n+1,∞,R) ↪→

Gr+(2n+ 2,∞,R) induces the homomorphism pi 7→ pi, 1 ≤ i ≤ n, and eu2n+2 7→ 0;
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(d) Let V be a real oriented vector bundle over B, and φ the corresponding classifying
map. Setting p0 = 1 and p(V) =

∑
φ∗pi we get p(V ⊕ V ′) = p(V) · p(V ′).

Proof: For a compact Lie group K with a maximal (Cartan) torus T ⊂ K, the Weyl
group W is the quotient of the normalizer of T in K modulo T . It acts on the Lie algebra
t, and we argued in §1.5 that H•(BK,Q) ∼= Q[t]W . For K = SO(2n + 1), t∗ has a basis
y1, . . . , yn, where W =: W (Bn) := Sn n Fn2 acts by permutations and sign changes. For
K = SO(2n), t∗ has a basis y1, . . . , yn, where W =: W (Dn) acts as the index 2 subgroup of
W (Bn) : Sn n Ker(

∑
: Fn2 → F2). In particular, eu2n = y1 · · · yn. Everything follows.

By the way, by a Chevalley theorem, the restriction Q[k]K ∼−→Q[t]W . The corresponding
invariant functions on k are Tr(Λ2iX) 7→ pi, and Pfaff(X) 7→ eu.

Here is an alternative topological argument. Consider a fibration

St(2, 2k,R)
S2k−2

−−−→ S2k−1

identifying St(2, 2k,R) with the unit tangent bundle T1S
2k−1 as in the proof of Lemma 6.1.1.

The action of S1 on S2k−1 ⊂ Ck generates a global nonvanishing vector field, i.e. a section
of the above fibration. It follows that H•(St(2, 2k,R),Q) ' ΛQ(a2k−2, a2k−1). We prove (a)
by induction in k considering the spectral sequence of the fibration

(4) BSO(2k − 2)
St(2,2k,R)−−−−−→ BSO(2k).

We have d2k−1(a2k−2) = 0: otherwise d2k−1(a2k−2) = v 6= 0, and d2k−1(a2k−2v) = v2 = 0,
hence E2k−1,2k−2

∞ 6= 0; however, the odd cohomology H4k−3(BSO(2k − 2),Q) = 0 by the
induction assumption. Thus d2k−1 ≡ 0.

At this stage we already see that Hodd(BSO(2k),Q) = 0. Indeed, this is the first row
E•,02 of our spectral sequence. Among the higher differentials only d2k and d4k−2 can possibly
land into the first row, but they can possibly kill only even degrees elements, so the odd degree
elements in the first row will survive and give the odd degree elements in E∞ — contradiction
to the induction assumption.1

Since deg a2k−1 is odd, we must have d2ka2k−1 = w 6= 0, and

d2k : a2k−1 · E••2k ↪→ w · E••2k .
Indeed, the kernel of d2k in a2k−1 ·E••2k would contribute to the (nonexisting) odd degree terms
of E∞. In particular, d2k embeds a2k−1⊗E•,02 into w ·E•,02 , and thus w is not a zero divisor in
E•,02 . Also, E••∞ ' E•,0∞ ⊕ a2k−2E

•,0
∞ is the associated graded of Q[p1, . . . , pk−2, eu2k−2]. Hence

p1, . . . , pk−2 ∈ E•,0∞ , and eu2k−2 = a2k−2, eu
2
2k−2 ∈ E•,0∞ =⇒

E•,0∞ = Q[p1, p2, . . . , pk−2, eu
2
2k−2], and E•,02 = Q[p1, p2, . . . , pk−2, eu

2
2k−2, w].

Indeed, if w is not algebraically independent, the relation it satisfies is divisible by w: other-
wise after d2k kills w we are left with a relation on p1, . . . , pk−2, eu

2
2k−2. But a minimal degree

relation divisible by w implies that w is a zero divisor, while we know already that w is not
a zero divisor in E•,02 .

1I emphasize the claims omitted in the argument that I screwed up during the lecture.
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Set pk−1 := eu2
2k−2. Then E•,02 = H•(BSO(2k),Q) = Q[p1, . . . , pk−1, w]. We define the

Euler class eu2k ∈ H•(BSO(2k),Q) as w (the transgression of a2k−1), and (a) is proved.

Consider the spectral sequence of the fibration

BSO(2k − 2)
S2k−2

−−−→ BSO(2k − 1).

It has just two nonzero rows: E•,02 and E•,2k−2
2 = a2k−2E

•,0
2 . If d2k−1a2k−2 = v 6= 0, then

d2k−1(a2k−2v) = v2 = 0, and hence E2k−1,2k−2
∞ 6= 0. It contradicts the odd cohomology

vanishing of BSO(2k − 2). Hence d2k−1a2k−2 = 0, and d2k−1 ≡ 0, and E••2 = E••∞ . Hence the
odd cohomology of BSO(2k− 1) vanish. Now consider the spectral sequence of the fibration

BSO(2k − 1)
S2k−1

−−−→ BSO(2k)

with E••2 = H•(BSO(2k),Q) ⊗ ΛQ(a2k−1). The odd cohomology vanishing of BSO(2k − 1)
implies d2ka2k−1 6= 0. More precisely, comparing with the above computation for the
fibration (4) we see d2ka2k−1 = w, hence d2k(a2k−1x) = wx. Hence E••2k+1 = E••∞ =
Q[p1, . . . , pk−1] = H•(BSO(2k − 1),Q).

To prove (d) we trace back the above construction of pi and check that its pullback under
BSO(2)×n → BSO(2n+ 1) is the i-th elementary symmetric polynomial of y2

1, . . . , y
2
n. �

8.1.1. Nonoriented case. We have a two-fold covering BSO(k) → BO(k) = Gr(k,∞,R).
Hence H•(Gr(k,∞,R),Q) = H•(BSO(k),Q)Z/2Z. The classes pi are Z/2Z-invariant and
descend to the same named classes in H•(Gr(k,∞,R),Q). The class eu2n is multiplied by
(−1)n.

8.2. Pontriagin classes. The natural embedding SO(n) ↪→ U(n) gives rise to Ξ: BSO(n)→
BU(n) corresponding to the operation of complexification of real vector bundles. At the level
of Cartan algebras (i.e. for the induced map BSO(2)×b

n
2
c → BU(1)×n), say for n = 2k even,

the corresponding map (on cohomology) is zi 7→ yi, zk+i 7→ −yi, 1 ≤ i ≤ k. The odd elemen-
tary symmetric polynomials in z go to zero, and Ξ∗e2m(z1, . . . , zn) = (−1)mem(y2

1, . . . , y
2
k).

In other words, Ξ∗c2m+1 = 0, Ξ∗c2m = (−1)mpm.
Conversely, the natural embedding U(n) ↪→ SO(2n) gives rise to Θ: BU(n) → BSO(2n)

corresponding to the operation of restriction of scalars from C to R (taking a complex vector
bundle V of rank n to a rank 2n real vector bundle VR). At the level of Cartan algebras
(i.e. for the induced map BU(1)×n → BSO(2)×n), the corresponding map (on cohomology)
is yi 7→ zi, 1 ≤ i ≤ n. Hence Θ∗eu2n = cn.

8.2.1. Definition. For a real rank k vector bundle V → B the Pontriagin classes are defined
as pi(V) := (−1)ic2i(V ⊗R C), p0 = 1. The total Pontriagin class p(V) =

∑k
i=0 pi(V). We

have p(V ⊕ V ′) = p(V) · p(V ′).
Equivalently, pi(V) = φ∗pi for the classifying map φ : B → Gr(k,∞,R).
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9. May 22nd

9.1. The Euler class. Recall the setup of §4.4. Let V → B be an oriented real vector
bundle of rank m. The Thom class

tV ∈ Hm(Th(V),Z) = Hm(D(V), S(V);Z)→ Hm(D(V),Z) = Hm(B,Z) 3 eum(V)

goes to the Euler class. Equivalently, eum(V) = Φ−1(tV · tV); in particular wm(V) ≡ eum(V)
(mod 2). The Euler class is natural for the pullbacks of oriented vector bundles, and changes
sign if we change the orientation. In particular, if the rank m is odd, then 2eum(V) = 0
(since the opposition changes orientation), so that eum(V) = wm(V). The same argument as
in §4.5.3 proves eum+m′(V ⊕ V ′) = eum(V) · eum′(V ′).

The same argument as in §6.1 defines the obstruction om(V) ∈ Hm(B,Z) (where Z =
πm−1(St(1,m,R))) to constructing a nowhere vanishing section of V . The same argument as
in §6.2 proves om(V) = eum(V). In case m is even, and φ : B → BSO(m) is the classifying
map for V , the same argument proves eum(V) = φ∗eum. In particular, the top Chern class
of a complex vector bundle is the Euler class of its restriction of scalars from C to R.

9.2. Chern and Pontriagin numbers. A partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λ` ≥ 0) can
be written in the form (imi) where mi is the number of occurences of i among {λr}`r=1. For
a smooth compact complex manifold M of complex dimension n and a partition P(n) 3
λ = (imi) we set Cλ[M ] = 〈cm1

1 (TCM) · · · cmnn (TCM), [M ]〉 (Chern classes of complex tangent
bundle). Similarly, for a smooth compact oriented manifold N of real dimension 4n we set
Pλ[N ] = 〈pm1

1 (TN) · · · pmnn (TN), [N ]〉. For example,

Cλ[CPn] =
∏̀
r=1

(
n+ 1

λr

)
, Pλ[CP2n] =

∏̀
r=1

(
2n+ 1

λr

)
,

since ci(TCCPn) =
(
n+1
i

)
zi where z is the oriented generator of H2(CPn,Z).

9.3. Monomial symmetric functions. A basis in the ring Λ of symmetric polynomials in
x1, x2, . . . with integral coefficients is formed by {eλ := eλ1 · · · eλ`}λ∈P (elementary symmetric

functions). Another basis is formed by the monomial functions mλ :=
∑
xλ1σ(1) · · ·x

λ`
σ(`) (sum

over all permutations, but every monomial enters with coefficient 1). For example, m(k) =∑
j x

k
j . Indeed, for the transposed partition λt we have eλ = mλt+ combination of mµ for µ

lexicographically smaller than λt. Hence eλ is an integral linear combination of {mν}, and
mλ is an integral linear combination of {eν}.

Substituting ci (resp. pi) in place of ei we get mc
λ ∈ H2|λ|(Gr(∞, 2∞,C),Z) (resp. mp

λ ∈
H4|λ|(Gr+(∞, 2∞,R),Z)). For a complex vector bundle V → B, the pullbacks of these
classes with respect to the classifying map B → BU(k) are denoted mc

λ(V) ∈ H2|λ|(B,Z).
Similarly, for an oriented real vector bundle V → B, the pullbacks of these classes with
respect to the classifying map B → BSO(k) are denoted mp

λ(V) ∈ H4|λ|(B,Z). Pairing
these classes for the tangent bundle with the fundamental class of a complex manifold M
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(resp. a real oriented manifold N) we get the integers mc
λ[M ] (resp. mp

λ[N ]). In particular,
mc

(n)[CPn] = n+ 1, mp
(n)[CP

2n] = 2n+ 1.

9.3.1. Lemma. For complex vector bundles V ,V ′ → B, we have

mc
λ(V ⊕ V ′) =

∑
µν=λ

mc
µ(V)mc

ν(V ′),

where for two partitions µ = (imi) and ν = (ini) their shuffle µν is defined as (imi+ni).
Proof: mλ(x, y) =

∑
µν=λmµ(x)mν(y). �

9.3.2. Corollary. mc
λ[M ×M ′] =

∑
µν=λ

|µ|=dimM, |ν|=dimM ′

mc
µ[M ]mc

ν [M
′].

9.3.3. Proposition. Let M4,M8, . . . ,M4n be smooth oriented compact manifolds such that
mp

(k)[M
4k] 6= 0 (e.g. M4k = CP2k). Then the p(n) × p(n)-matrix M with matrix elements

Pµ[M4λ1 × . . .×M4λ` ] numbered by pairs of partitions |λ| = |µ| = n, is nondegenerate.
Proof: It suffices to prove the nondegeneracy of another matrix M′ with matrix elements

mp
µ[M4λ1 × . . . × M4λ` ] =

∑
ν(1)ν(2)...ν(`)=µm

p

ν(1)
[M4λ1 ] · · ·mp

ν(`)
[M4λ` ], where the sum runs

over `-tuples of partitions such that |ν(i)| = λi. This matrix element vanishes unless µ is a
refinement of λ, in particular, if `(µ) < ` = `(λ). Hence for a total order on P(n) compatible
with the partial order of refinement, the matrix M′ is lower-triangular. The diagonal entries
are mp

(λ1)[M
4λ1 ] · · ·mp

(λ`)
[M4λ` ] 6= 0, hence M′ and M are nondegenerate. �

10. May 29th

10.1. Oriented cobordisms. The oriented real manifolds M,M ′ of dimension k are ori-
ented cobordant if there is an oriented real manifold N with boundary M tM ′ with induced
orientation M t −M ′. This is an equivalence relation, and the quotient is an abelian group
Ωk with operation M + M ′ := M t M ′ (and with inverse −M := M with the opposite
orientation). The direct product induces a homomorphism Ωk × Ωm → Ωk+m, hence the
supercommutative graded ring Ω•. Similarly to Exercise 3 of 08.05, if M4n is a bound-
ary of N4n+1, then any Pλ[M

4n] = 0. Hence any partition λ of n defines a homomorphism
Ω4n → Z, M4n 7→ Pλ[M

4n]. It follows from Proposition 9.3.3 that {CP2λ1×. . .×CP2λ`}λ∈P(n)

are linearly independent in Ω4n.
According to R. Thom,

(5) Ωn
∼= πk+n(Th(Sk), t0)

for the Thom space of the universal tautological bundle Sk → Gr+(k,∞,R) and k > n+ 1.
The homomorphism from the RHS to the LHS is constructed by the following
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10.1.1. Proposition. Let V p→ B be a rank k smooth real oriented vector bundle over a
smooth manifold B. Then any continuous map f : Sm → Th(V) is homotopic to a continuous
map g smooth away from the base point t0 ∈ Th(V) and transversal to the zero section
B ⊂ Th(V). The oriented cobordism class of the resulting smooth oriented m−k-dimensional
manifold g−1(B) depends only on the homotopy class of f . Hence we obtain a homomorphism
πm(Th(V), t0)→ Ωm−k.

Proof: First we approximate f by f0 smooth away from t0. Choose an open covering
W1 ∪ . . .∪Wr of the compact f−1

0 (B) such that each open Wi ⊂ Sm lands into a local chart
Ui × D1(0) (where D1(0) is the open unit ball in Rk) in the disc bundle D(V)|Ui . Choose
compacts Ki ⊂ Wi such that f−1

0 (B) is contained in the interior of K1 ∪ . . . ∪ Kr. We
will successively modify f0 on the open sets W1, . . . ,Wr to obtain f1, . . . , fr satisfying the
following conditions:

(a) fi is smooth away from t0 and coincides with fi−1 away from a compact in Wi;
(b) fi|K1∪...∪Ki is transversal to B: if fi(x) ∈ B, then dfi(TxS

m) + Tfi(x)B = Tfi(x)Th(V);
(c) If f0(x) 6= t0, then p(fi(x)) = p(f0(x)).

At the i-th step we know that fi−1(Wi) ⊂ Ui × D1(0) ⊂ p−1(Ui). We denote by qi the
projection Ui × D1(0) → D1(0). We know p ◦ fi by (c) and have to define qi ◦ fi. By (b),
0 ∈ D1(0) is a regular value of qi ◦ fi−1|(K1∪...∪Ki−1)∩Wi

. Hence qi ◦ fi−1 can be approximated
by a map ϕi : Wi → D1(0) that coincides with qi ◦ fi−1 away from a compact subset of Wi

and such that 0 ∈ D1(0) is a regular value of ϕi|(K1∪...∪Ki)∩Wi
. We set qi ◦ fi := ϕi.

Now the desired g := fr. Then g|K1∪...∪Kr is transversal to B. It remains to make sure
that g−1(B) ⊂ K1 ∪ . . .∪Kr. Since K1 ∪ . . .∪Kr is a neighbourhood of f−1

0 (B) ⊂ Sm, there
exists 0 < c < 1 such that |f0(y)| ≥ c for any y 6∈ K1∪ . . .∪Kr (here |t| is the euclidean norm
of a point t ∈ Th(V); in particular, |t0| = 1). Additionally to (a–c) above, we will choose
fi close enough to fi−1, so that |fi(x) − fi−1(x)| < c/r for any x. Then |g(x) − f0(x)| < c,
and hence |g(y)| 6= 0 for y 6∈ K1 ∪ . . .∪Kr. So g−1(B) ⊂ K1 ∪ . . .∪Kr, and g is everywhere
transversal to B, and g−1(B) is a smooth compact oriented m− k-dimensional manifold.

If g and g′ are homotopic maps Sm → Th(V) smooth away from t0 and transversal to B,
then we can construct a homotopy h0 : Sm × [0, 3]→ Th(V) smooth away from t0 and such
that h0(x, s) = g(x) for s ∈ [0, 1], while h0(x, s) = g′(x) for s ∈ [2, 3]. Similarly to above,
we can modify it to h : Sm× [0, 3]→ Th(V) coinciding with h0 away from a compact subset
of Sm × (0, 3) and transversal to B. The preimage h−1(B) realizes an oriented cobordism
between g−1(B) and g′−1(B). Thus, the oriented cobordism class of g−1(B) is well defined.

Finally, the addition in πm(Th(V), t0) corresponds to the disjoint union of preimages
g−1(B), and hence our map πm(Th(V), t0)→ Ωm−k is a homomorphism. �

10.1.2. Proposition. The homomorphism πk+n(Th(Sk), t0)→ Ωn for the Thom space of the
universal tautological bundle Sk → Gr+(k, k + p,R) is surjective for k ≥ n and p ≥ n.

Proof: Given a smooth compact oriented n-dimensional manifold M we can embed it
into Rk+n (Whitney). Consider the Gauß map from the total space of the normal bundle
NM/Rk+n to the total space of the tautological bundle over Gr+(k, k + n). Compose it
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with the embedding into the total space of the tautological bundle Sk over Gr+(k, k + p).
Restricting it to a tubular neighbourhood Rk+n ⊃ U ⊃M and projecting to the Thom space
we obtain g : U → Th(Sk) transversal to the zero section Gr+(k, k + p) ↪→ Sk such that
g−1(Gr+(k, k + p)) = M . We extend g to the one-point compactification Sk+n = (Rk+n)+

sending the complement of U to t0. The resulting map g : Sk+n → Th(Sk) gives rise to the
cobordism class of M by the rule of Proposition 10.1.1. �

10.1.3. Proof of (5) modulo torsion. According to Proposition 10.1.2, the homomorphism
πk+n(Th(Sk), t0)→ Ωn is surjective for k ≥ n. The Thom space Th(Sk) is k − 1-connected.
It follows that the Hurewicz homomorphism πr(Th(Sk), t0) → Hr(Th(Sk),Z) is an iso-
morphism modulo torsion for r < 2k − 1 (use Theorem 1.3). We know the dimension
of Hn+k(Th(Sk),Q) = Hn(Gr+(k,∞,R),Q) by Theorem 8.1. By Proposition 9.3.3, the rank
of Ωn ⊗Z Q is at least the rank of Hn(Gr+(k,∞,R),Q). �

10.1.4. Corollary. Ω• ⊗Z Q = Q[CP2,CP4,CP6, . . .].

10.1.5. Notation. The Thom space of the universal tautological bundle Sk over BSO(k) is
denoted MSO(k): the classifying space of oriented cobordisms. Similarly, the Thom space
of the universal tautological bundle over BU(k) is denoted MU(k): the classifying space of
stable complex cobordisms. These are equivalence classes of manifolds whose tangent bundle
is equipped with a stable complex structure, that is for some r, TM ⊕ Rr is equipped with
a complex structure.

10.2. Pontriagin numbers and homology of BSO. The tangent bundle of a smooth
compact oriented real 4n-dimensional manifold M defines the classifying map φ : M → BSO.
Given an element h ∈ H•(BSO,Q) we can integrate 〈φ∗h, [M ]〉 to obtain a number. This

way M gives rise to a linear functional H•(BSO,Q)
[M ]−→ Q.

More precisely, M defines a degree 4n homogeneous linear functional on the completed

cohomology ring Ĥ•(BSO,Q) = Q[[p1, p2, . . .]]. This functional is a degree 4n element of the
homology ring H•(BSO,Q) (recall that BSO is an H-space).

If M is the boundary of N , then the above functional vanishes. Thus we obtain a linear
map T : Ω• ⊗Z Q → H•(BSO,Q). Furthermore, since T (M1 × M2) = TM1 ⊕ TM2, and
the monoidal structure on BSO is given by the direct sum, T is a ring homomorphism.
Moreover, by Thom theorem 10.1.4, T is an isomorphism.

So any linear functional ϕ : Ω• → Q can be viewed as an element
∑∞

i=0Ki ∈ Ĥ•(BSO,Q) =
Q[[p1, p2, . . .]], for a sequence of homogeneous polynomials Ki(p1, . . . , pi), degKi = i. The
condition that ϕ is an algebra homomorphism (a character) is equivalent to the condition that

Q → Ĥ•(BSO,Q), 1 7→
∑∞

i=0 Ki, is a homomorphism of coalgebras. It can be formulated
in terms of the sequence (Ki) as follows. Suppose the formal variables pi, p

′
j, p
′′
k satisfy an

equality
1 + p1 + p2 + . . . = (1 + p′1 + p′2 + . . .) · (1 + p′′1 + p′′2 + . . .). Then∑

i≥0

Ki(p1, . . . , pi) =
∑
j≥0

Kj(p
′
1, . . . , p

′
j) ·
∑
k≥0

Kk(p
′′
1, . . . , p

′′
k).
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Indeed, recall that the symmetric functions ring Λ is a Hopf ring with respect to the coproduct
∆(ei) = ei ⊗ 1 + 1⊗ ei.2

Such a sequence (Ki) is called a multiplicative Hirzebruch sequence.

10.2.1. Proposition. A multiplicative Hirzebruch sequence (Ki) is completely determined by
the characteristic power series Q(x) = 1 + q1x + q2x

2 + . . . ∈ 1 + xQ[[x]], where x = p1,
and qi = Ki(1, 0, . . . , 0). Moreover, any formal series Q(x) gives rise to a multiplicative
Hirzebruch sequence.

Proof: Recall that the Pontriagin classes correspond to the elementary symmetric poly-
nomials (in “Pontriagin roots” xi), so that 1 + p1 + . . .+ pn = (1 + x1) · · · (1 + xn). Hence

Q(x1) · · ·Q(xn) = 1+K1(p1)+K2(p1, p2)+ . . .+Kn(p1, . . . , pn)+Kn+1(p1, . . . , pn, 0, . . .)+ . . .

�

11. June 5th

11.1. Hirzebruch genera. A ring homomorphism Ω• → Q (a character) is called a genus.
Thus any characteristic power series Q(x) = 1 + q1x + q2x

2 + . . . ∈ 1 + xQ[[x]] determines
a Hirzebruch genus ϕQ[M4n] = 〈

∏n
i=1Q(xi), [M

4n]〉, where (1 + x1) · · · (1 + xn) = p(TM4n).
Conversely, any genus arises from an appropriate characteristic power series.

The most famous genus is the signature (of the Poincaré pairing on the middle cohomol-
ogy).

11.1.1. Theorem. (F. Hirzebruch, 1954) The signature sign(M) is given by the L-genus

L(x) =

√
x

tanh(
√
x)

=
∑
k≥0

22kB2kx
k

(2k)!
= 1 +

x

3
− x2

45
+ . . .

(Bernoulli numbers). The corresponding multiplicative Hirzebruch sequence is

L0 = 1, L1 =
p1

3
, L2 =

7p2 − p2
1

45
, L3 =

62p3 − 13p1p2 + 2p3
1

945
,

L4 =
381p4 − 71p1p3 − 19p2

2 + 22p2
1p2 − 3p4

1

14175
, . . .

Proof: It suffices to compare the signature and L-genus on generators of Ω• ⊗Z Q. Evi-
dently, sign(CP2k) = 1. On the other hand, p(TCP2k) = (1+z2)2k+1, and L(z2) = z/ tanh(z);
hence L(p(TCP2k)) = (z/ tanh(z))2k+1. So we have to find the degree 2k term of this

series, that is
1

2πi

∮
dz

z2k+1

(
z

tanh(z)

)2k+1

. The variable change u = tanh(z), so that

2By the way, Λ is graded selfdual, and an orthonormal base of Λ is formed by the Schur functions that
correspond to the fundamental classes of Schubert cells. This is the unique integral orthonormal base up to
permutations and sign changes.
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dz =
du

1− u2
= (1 + u2 + u4 + . . .)du, proves

1

2πi

∮
dz

tanh2k+1(z)
=

1

2πi

∮
(1 + u2 + u4 + . . .)du

u2k+1
= 1. �

11.1.2. Corollary. L[M ] is an integer. For example, p1[M4] is divisible by 3, while 7p2[M8]−
p2

1[M8] is divisible by 45.

11.2. Complex version. There is a parallel story for the (stable) complex cobordism ring
ΩC
• in place of Ω•, and Chern classes in place of Pontriagin classes. In particular, the Todd

genus

Td(x) =
x

1− exp(−x)
= 1 +

x

2
+
∑
k≥1

(−1)i+1B2kx
2k

(2k)!
= 1 +

x

2
+
x2

12
+ . . .

The corresponding multiplicative Hirzebruch sequence is

Td0 = 1, Td1 =
c1

2
, Td2 =

c2 + c2
1

12
, Td3 =

c1c2

24
, Td4 =

−c4 + c1c3 + 3c2
2 + 4c2

1c2 − c4
1

720
, . . .

We have Td(CPn) = 1 for any n.

11.3. PL Pontriagin classes. We will study the simplicial complexes that have a structure
of a topological (not necessarily smooth) manifold, and their piecewise linear (PL) morphisms
(that is, linear on simplices after an appropriate subdivision). For example, Sk: the boundary
of the standard k + 1-simplex. More generally, any smooth compact manifold has a PL
structure (Whitehead); it is unique up to a PL isomorphism.

11.3.1. Lemma. Let Mn be a compact PL manifold of dimension n, and f : Mn → Sk a PL
morphism, n − k = 4i. Then for almost all y ∈ Sk, the preimage f−1(y) is a compact
PL manifold of dimension 4i. A choice of orientations of Mn and Sk defines the induced
orientation of f−1(y), and the signature sign(f−1(y)) is independent of y for almost all y. �

This common value of sign(f−1(y)) is denoted sign(f). Similarly to Exercises 4,5, we have

11.3.2. Lemma. a) sign(f) depends only on the homotopy class of f in πk(Mn);
b) If 8i < n − 1, so that πk(Mn) is a group (as in Exercise 4a), then f 7→ sign(f) is a

homomorphism πk(Mn)→ Z. �

11.3.3. Theorem. a) If 8i < n− 1, there is a unique cohomology class Li(M
n) ∈ H4i(Mn,Q)

such that 〈Li(Mn) · f ∗s, [Mn]〉 = sign(f);
b) If Mn is a PL structure on a smooth manifold Mn, then Li(M

n) = Li(TM
n). �

If the condition 8i < n − 1 is not satisfied, we can consider Mn × Sm for m � 0, and
define Li(M

n) ∈ H4i(Mn,Q) as the pullback of Li(M
n×Sm) ∈ H4i(Mn×Sm,Q) for a natural

embedding Mn ↪→ Mn × Sm. In particular, 〈Li(M4i), [M4i]〉 = sign(M4i).



26

11.4. Lemma. a) There is a rank 4 oriented vector bundle V over S4 such that p1(V) = −2s,
and eu4(V) = s, where s is the generator of H4(S4,Z);

b) For any k,m ∈ Z such that k ≡ 2m (mod 4), there is a rank 4 oriented vector bundle
W over S4 such that p1(W) = ks, and eu4(W) = ms.

Proof: a) V is the tautological vector bundle over HP1 = S4. Then c(V) = 1 + eu4(V) =
1 + s =⇒ p(V) = (1− s)2 = 1− 2s.

b) π4(BSO(4)) = π3(SO(4)) = Z ⊕ Z. Given f : S4 → BSO(4), p1(f ∗S4) and eu4(f ∗S4)
are linear functionals Z⊕Z = π4(BSO(4))→ H4(S4,Z) = Z. The values of these functionals
on the classifying map of V are −2, 1. The values of these functionals on the classifying map
of the tangent bundle TS4 are 0, 2. �

11.5. Example. (Milnor, 1956) For any k ≡ 2 (mod 4) let Wk be a rank 4 oriented vector
bundle over S4 with p1(Wk) = ks, eu4(Wk) = s. From the Gysin sequence for the sphere bun-

dle S(Wk)
S3

−→ S4 we conclude that S(Wk) is homotopic to S7. Actually it is homeomorphic
to S7, and even PL equivalent to S7. It follows that Th(Wk) (the one-point compactification
of the open disc bundle) is a PL manifold. But H•(Th(Wk),Z) = Z[0] ⊕ Z[−4] ⊕ Z[−8],
hence sign(Th(Wk)) = 1 (with an appropriate choice of orientation).

The total Pontriagin class of the tangent bundle of the total space of Wk is

p(TWk) = π∗(p(TS4) · p(Wk)) = π∗(1 + ks)

up to 2-torsion, where π is the projection from the total space of Wk to S4. Hence
p1(TTh(Wk)) = ku, where u is a generator of H4(Th(Wk),Z). Indeed, passing to the one-
point compactification ofWk does not affect H4. Hence P(1,1)[Th(Wk)] = k2 (by Poincaré du-
ality with integral coefficients, u2 is a generator of H8(Th(Wk),Z)). By Hirzebruch formula,
1 = sign(Th(Wk)) = 7

45
P(2)[Th(Wk)]− 1

45
P(1,1)[Th(Wk)], hence P(2)[Th(Wk)] = (45+k2)/7 is

not integral if k 6≡ ±2 (mod 7). Hence the PL manifold Th(Wk) admits no smooth structure
if k 6≡ ±2 (mod 7) (but k ≡ 2 (mod 4)). In particular, the smooth manifold S(Wk) is not
diffeomorphic to S7 (though it is PL equivalent to S7): otherwise Th(Wk) would be smooth.


