1. MARCH 27TH

1.1. HY(K(m,n),Z) are finitely generated: clear for n = 1, then by induction in n from the
s.s. of
pt RGNy e (m,n) :

the first non-finitely generated group in the first row cannot be cancelled by anything.

1.2, Ifm(X)=0and H*(X) are finitely generated (resp. finite), then so are 7¢(X) (Coun-
terexample: X = SV §2.) Indeed, if both H*(F) and H*(B) are fin.gen. (resp. finite), then
sois H*(E): clear from s.s. Now apply to

K(Ha(X),1) K(H3(X3),2
—_— —_—5

X4 X|s =X, X4 NS

get fin.gen. (resp. finiteness) of H*(X]|,), hence of He(X]|,), hence of m,(X]|,).

1.3. Theorem. 7,(5*""') ® Q is 1-dimensional in degree 2n + 1, while 7,(S**) ® Q is 1-
dimensional in degrees 2n and 4n — 1.
Proof: The Fy ® Q of s.s. of

K(Z2n

2n+1 ) o2n+1 _ o2n+l
S |2n+2—>5n |2n+1—Sn

has columns 0, 2n+1 and rows 0, 2n, 4n, . .. Figure We have dy,,12% = ka*1dy, 12 = kaF s,

hence E,, = Q[0], hence H*(S*"*1|y,,5) are finite, hence m,(S***|,,2) are finite, hence
Tsont1(S?T1) are finite.
In the even case the Fy ® Q of s.s. of
SQn’QnJrl w} S2n|2n — SQn
has columns 0, 2n and rows 0,2n — 1. Figure Hence H®*(S*"|y,,1, Q) = H*(S*~1,Q), hence
Hopi1(S?2n41) = Tons1(S%|oni1) = Toni1(S*") is finite. Now from the fibration

K (m2n41(5%"),2

52n|2n+2 n)f 52n|2n+1

we know that the cohomology of the fiber are finite, hence H*(S5%"|4,12, Q) = H*(5%"|9,11, Q)

for n > 1. Therefore, mo,12(S* |oni2) = Toni2(S5?") is finite, hence H*®(S*|y,43,Q) =

H*(S5*|9042,Q) = ... = H*(5*|4n-1,Q) = H*(5*"[4n—2,Q) = ... = H*(5*|2,41,Q) =

H'(S4n_17 @), and H4n71(52n|4n717(@) = 7T4n71(52n|4n71> ®Q = 7T4n71<52n) ®Q=Q.
Finally, the s.s. of

K(7r4n,1(52n),4n—2)\

52n|4n SQn’4n71

implies H*(5%"|4,, Q) = Q[0], hence Hs4,(5*"|4,) are finite, hence 754, (5% 4n) = 7540 (S5*")
are finite. 0
1
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1.4. Theorem. (A. Borel, 1953) Consider a fibration F — F — B with m(B) = 0 and
contractible . Then H*(B,Q) = Q|xy, ..., Tk,
degz; = 2r; iff H*(F,Q) = Ag(y1, ..., yk), degy; = 2r; — 1 = degaz; — 1.

Follows from the Eilenberg-Moore s.s. (1962) with

By =Torl\\P) (H*(X),H*(Y)) = H*(X x3Y)
applied to X = F, Y = pt.

This is the s.s. of the bicomplex Bar ®cs5)C*(Y') quasiisomorphic to C*(X xpY’). Here
C*(7) is the singular cochain complex, and Bar is the bar-resolution of C*(X) as of C*(B)-
dg-module.

In particular, dy,,y; = z;, while all the previous differentials annihilate y;. Such a homo-
morphism from the subgroup of H™(F) annihilated by d<,, to the quotient of H"*!(B) mod-
ulo the image of d<, (“partially defined multivalued homomorphism H"(F) — H"™'(B)”)
is called the transgression 7.

1.5. Classifying spaces. If a topological group G acts freely on a contractible space EG,
the quotient space BG := EG /G is called the classifying space of G. For instance, K(m, 1) =
Br, and CP>* = BS!. Let St(k,n,C) be the space of orthonormal collections of k vectors in
C" equipped with a positive definite hermitian product (the Stiefel variety). We have an em-
bedding St(k,n,C) — St(k,n+1,C), and St(k, 00, C) := nh_}r& St(k,n,C). It is contractible,

and St(k, 00, C)/ U(k) = Gr(k, 00, C) := lim Gr(k,n,C). Hence Gr(k, 00, C) = BU(k).
n—oo

Given a subgroup H C G, EG/H = BH, and we get a fibration G/H — BH — BG.
Take G = U(k) D T = (SY)* = H. Then G/H = F{(CF) is the space of complete flags
in C*, and BH = (CP*)*, so that H*(BH,Q) = Q|z, ..., 2], degz; = 2. The normalizer
N(k) of T in U(k) is the semidirect product of 7" and the symmetric group Sy, and we
consider the composition BT — BN(k) — BU(k). The left arrow is an Si-torsor, so
that H*(BN(k),Q) = H*(BT,Q)% = Q[zy,2,...,7s], degz; = 2i. The right arrow is
a fibration with fiber F¢(CF)/Sy, and H*(F¢(CF)/S, Q) = H*(F{(CF),Q)%. We know
that dim H*(F¢(C*), Q) = x(F¢(C*)) = k! by the Bruhat decomposition (= Schubert cells).
It follows that H*(F((C*)/Sy, Q) = Q[0], and hence H*(BU(k),Q) = H*(BN(k),Q) =
@[1‘1, To, ... ,l‘k].

Finally, from the Borel Theorem we obtain yet another way to calculate H*(U(k), Q). It
works for any compact Lie group. For instance, for USp(k) the quotient of the normalizer
of the maximal torus by this torus (the Weyl group) is the semidirect product W = S, x F%
(where F% acts by changing the signs of z;’s), hence H*(BT, Q)" = Q[a}, 2}, ..., 2], dega} =
43.

1.6. Cohomological operations. They are the natural transformations O(n,q,7) from
H™(?,7) to H1(?, 7). By Yoneda, O(n,q,n7) = HY(K(m,n),n).
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1.6.1. Ezample: Bockstein homomorphism. A short exact sequence 0 — Z/(Z — 7./(*7 —
Z.JUZ — 0 gives rise to a long exact sequence

... HM(X,Z/0Z) — H"(X,Z/*Z) — H"(X,Z/(Z) 2= H" (X, Z/(Z) — ...
In fact, b, is a generator of H"" (K (Z/(Z,n),Z/(Z).

1.6.2. Stability. Since the suspension 3 is left adjoint to the loops Q, and QK (7m,n+ 1) =
K(m,n), we get ¥: HY(X,m) = H"W (XX, 7). Stable operations O,(k,m) are those that
commute with ¥ and raise the cohomological degree by k, i.e. Og(k,7) C O(n,n + k, 7).
They are also compatible with l.s.e.

o HY(X, 1) S HYY, 7)Y HYYY(X)Y, 7)) = HPY(X) — ..

for a Borsuk pair (cofibration) Y — X. We only need to check that they commute with 4.
Since

X/Y ~ Cone(i)/Cone(Y) ~ Cone(i) EN (X U; Cone(Y)) /X =%,
the desired commutativity follows from Exercise 4. Now from Exercise 5 we see that the
stable operations commute with transgression in s.s.: if « € H*(F,7) = Ey" is transgressive,
ie. doa = ... = dya = 0, and ¢ is a stable operation in Os(n,n + k,m), then p(a) €
H"k(F, 1) is also transgressive. Moreover, if

(@) = duiia € 1T = H™V (B, m)/(+ Imdy)
contains 3 € H"™ (B, ), then 7(¢(a)) 3 »(B).
1.6.3. Relation with cohomology of Eilenberg-MacLane spaces. Since the suspension ¥ is left

adjoint to the loops €2, and QK (m,n+ 1) = K(m,n), we get f,: EK(m,n) — K(m,n+ 1),
and hence

*

s HYE(K (), 1) S HR (K (o — 1),7) = — B (1), 7),
and O,(k, ) = lim of this sequence. In fact, this sequence stabilizes for n > k.
—
Finally, @, O(k, ) forms a graded noncommutative ring A, with respect to composition.

If 7 =T,, it is called the Steenrod algebra A, (over F,).

1.7. Steenrod squares. They are generators of A, (so that p = 2), e.g. Sq' = by is the
Bockstein homomorphism.

Construction: let e, € H"(K(Fy,n),Fy) be the fundamental class. We set Sq"e, := €2
(hence the name). Let n > 1. Consider the s.s. of

K (Fg,n—1)

pt ——— K(F3,n).

Figure Everything in the Oth column below e2 | is transgressive, and e2 ;| is transgressive
as well. Indeed, for d,,: EX>?*"~% — E%"! we have d,(e2_,) = 2e,,_; - dne,—1 = 0. Hence

€2 | i=dy_1e> [ =1h¢€ E%j’o = E§"‘1’° = H* Y(K(Fy,n),Fy)

does not vanish, and we set Sq" ' (e,) := h.



Now let n > 2. Then Sq" (e, 1) € Ey*" " is transgressive, and
Sq" %e, == 78¢"*(en_1) € H (K (Fy,n),Fy),

and so on. Also, Sq¢”"e, := 0. It remains to check the stability property f: ,Sq¢"e, =
Sqke, ;.
First we assume £ < n — 1. Since f_; is the composition of what
YK(Fyyn—1) =3XQK(Fy,n) — K(Fy,n)

induces in cohomology and of the suspension isomorphism, f;_; is inverse to the transgression
in the s.s. of

pt fF2n), K(Fq,n).
But 7(S¢*e,_1) = Sq*e, for k < n — 1 by construction, hence f* S¢*e, = Sq¥e,_;.
Now k = n; then Sq¢*e,_1 = S¢*Tle,_; = ... = 0 by construction, and we have to check

fi 1Sq*er = fi_e: = 0. Recall that f; , is the composition of
H*(K(Fa,k),Fy) — H* (XK (Fy, k — 1),Fy) — H* YK (Fy, k — 1), Fy).

The left map is a ring homomorphism taking e, — ey _1, and hence €2 — (Xex_1)* =0 by
the triviality of multiplication in the cohomology of suspension (Exercise 3).

1.7.1. H. Cartan formula. Sq*(af) = Zlﬂ.:k Sqla - S¢7 .

2. APRIL 3RD

2.1. Commutativity of multiplication in cohomology. Recall the cellular structure
of S = ES; with two cells e in each dimension n. It is acted upon by the antipodal
automorphism 7': e} + eZ. The corresponding cellular chain complex C,(5%,F;) is acted
upon by the symmetric group S with generator 7', and forms a free resolution P* :=

C_o(S°°,Fy) of the trivial Sy-module Fy.

Given a complex V' of Fy-vector spaces, a symmetric multiplication on V' is a morphism of
complexes V@V @ P* — V that factors through the coinvariants Dy(V) := (V@ V @ P*)sg,
where T" acts on V ® V' by permutation of factors. For a CW-complex X we construct a
symmetric multiplication on the cellular cochain complex C*(X, Fy).

We fix a cellular approximation A: X — X x X of the diagonal A: X — X x X, and
get A© = (A)*: C*(X x X, Fy) = C*(X,F,). We have To A ~ A, hence AOT ~ A je.
there is a homotopy AW : C*(X x X,Fy) — C*~}(X,F,) such that (note that + = — in [Fy)
AW+ dAD = AOT + AO),

Now there is a homotopy A®: C*(X x X,Fy) — C*~%(X,Fy) such that A@d + dA®?) =
ADT + AW and so on: AW: C*(X x X,Fy) — C*79(X,Fy) such that A@d + dAW@ =
ADT 4 A=Y This defines the desired symmetric multiplication

m: C*(X)®CH(X)@P*=C(X x X)®@P* — C*(X),
7@el i AD(?), 7@l s ADT.
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2.2. Another construction of Steenrod squares. Let ¢, € H"(Fo[—n]) be the unique
nonzero element. We have

Dy (Fs[—n]) = ((Fo[-n]) ® (Fo[-n]) ® P*) 4, = (F2[-2n]) ® (P,)

The latter factor is the cellular chain complex of RP*> that has a unique nonzero homology
class z,, in (homological) degree m € N.

For a complex V, a class v € H"V determines a homotopy class of maps 7: Fo[—n] — V.
For k < n, we set

Sq"(v) := the image of cop ® Tp_i € Cop @ Hy_ i (RP®,Fy) =2 H"* Dy(Fy[—n])

under the induced map
D2 (n)
e

Dy (Fs[—n]) Dy (V),
and we set S¢*(v) := 0 for k > n. If V' is equipped with a symmetric multiplication Dy (V) —
V, we set Sq*(v) := the image of S¢*(v) under the induced map H" ™ Dy(V) — H" V.
When V = C*(X,Fy), we obtain Sq*: H"(X,Fy) — H" (X, Fy).

2.3. Additivity. For v,v" € H"V and any k, we have
B¢ (v +v') = B¢ (v) + Bq(v') € H™Dy(V).

In particular, if V is equipped with a symmetric multiplication, we have S¢*(v + v') =
Sqk(v) + Sq*(v') € H V.

Indeed, for k£ > n we have all zeroes, and for k =n

Sq"(v+v) = (v+0)? = 5¢"() + S (V) + (vv' +v'v).

But the multiplication V ® V' — Dy (V') is commutative up to homotopy, so that vv’ +v'v =
2" = 0.

If k < n, by functoriality it suffices to consider the universal case V' = Fy[—n| @ Fo[—n].

It reduces to the evident trivial case v = 0 or v = 0 by the following result. Let v;, i € I, be
an ordered basis of H*V. Then {vv;, i < 7} U{S¢ (v;), r < degwv;} is a basis of H*Dy(V).
This in turn follows by induction from

2.4. Stability. There is a canonical map ¢: Dy(W[—1]) — Dy(W)[—1]. For W = Fy[—n)]
it sends co, 19 ® Ty, > Cop @ Tp—q in notation of beginning of §2.2. The following diagram
comimutes:

HW[-1]) ——  H'W

H* ™ (Dy(W[—1])) —2s H*+=1D, (W)

Proof: Set V.= W[—1]. Fix v € H"V, and set w = the corresponding class in H"'W. By
functoriality, we may assume V = Fy[—n|, W = Fy[l —n]. For k > n, H"™F1Dy(W) = 0,
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so we consider k < n. Then H" ™ 1Dy (W) (resp. H"**Dy(V)) is generated by Sq*(w) (resp.
Sq*(v)). Tt suffices to show that ¢: H™Dy(V) = H™ ' Dy(W) for m < 2n.

Let U be the exact complex ... = 0 — Fow = Fov -0 — ..., sothat V — U — W is
a distinguished triangle (an exact triple of complexes). From the sequence V®? — U®? —
W®2 the complex W®2?[—1] is homotopic to ... — 0 — Fovw & Fowv — Fov? — 0 — ... So
we get a distinguished triangle V®* — W®2[—1] — F2[1 — 2n| of complexes equipped with
an So-action. The (homotopy) coinvariants takes distinguished triangles to distinguished
triangles, so we get a distinguished triangle Dy(V) — Dy(W)[—1] — F3[l — 2n|. The
associated long exact sequence gives rise to H™Dy(V') == H™ 1 Dy(W) for m < 2n. O

2.5. Stability of Steenrod squares. If a complex V' carries a symmetric multiplication

Dy(V) — V, then V[—1] inherits a symmetric multiplication given by Dy(V[—1]) N

Dy(V)[—1] = V[—1], so we get a commutative diagram
H*H Dy (V[-1]) —— H*TY(V[-1])

‘| I
H'Do(V) ——  HV.
Hence the canonical isomorphism H*V = H*™!(V[-1]) commutes with the Steenrod squares

Sq¢*. In particular, if X is a pointed topological space, then the canonical isomorphism
H*(X,Fy) & H*T (XX, F,) commutes with the action of Steenrod squares Sg*.

2.5.1. Ezample. Let v € H",(S™ Fy) be the fundamental class. Then Sq¢*(v) = v if k = 0,
and 0 otherwise. By stability this reduces to n = 0.

For arbitrary X, v € H"(X,Fy), we have S¢*(v) = v if k = 0, and 0 if k£ < 0. Indeed,
since H"(X,Fy) is representable by K (FFy,n), it suffices to consider the universal case X =
K (Fq,n), v = e, is the fundamental class. Consider the classifying map f: S™ — K(Fa,n).
The induced map H™*(K (Fy,n),Fy) — H" k(S Fy) is bijective for k < 0, so we are done
by the previous example.

Note that for an arbitrary complex V' the negative Steenrod squares may happen to be
nontrivial.

3. ApriL 10TH

3.1. Cartan formula. For complexes V, W we have isomorphisms

Dy(V) @ Day(W) = (VE2 @ P*)s, @ (W2 @ P%)g, = (V@ W)@ (P*)*?) ¢ g,

Dy(VeW)=(VeW)*2aP*), .

A canonical map (V@ W)*? @ 73')52 - (VoW <P.)®2)ng52 given by the diagonal
embedding of Sy into S5 x S5 induces

V: Do(V@ W) — Dy(V) @ Dy(W).
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3.1.1. Proposition. Let v € H™V, w € H"W, so that v @ w € H™(V @ W). Then for any
k € Z we have

S (v @w) = Y S¢'(v) ® S (w) € H™H(Dy(V) @ Dy(W)).
l+j5=k

(The sum is actually finite.)
Proof: If k > m + n both sides vanish. If &k = m 4+ n — 1, we rewrite

¢S_qm+nzv®w qumz ®Sqnz()7 ///EN
il =1

By functoriality we may assume V = Fy|—m], W = Fy[—n]. Then in notation of beginning
of §227 H.DZ(V) = ]FQCQm & Tom—e,

H*Dy(W) = Focop @ Ton—e, H*Do(V @ W) = Focomion @ Tomion—e, and

ST (v @ W) = Compan @ T4, Sqm (v) = com ® Ty, Sq " (w) = cop @ T
The map 1 corresponds to the coproduct
A: H(RP®,Fy) — H,(RP® Fy) @ Hy(RP>®, Fy).
Since H (RP>*,Fy) = Fyft], degt = 1, and z; is dual to ¢, the coproduct is A(z;) =
Y iiir—i T @z, Finally,

ST (v @ W) = Comaon @ T Z (Com @ Tir) @ (Con @ i) = Sq™ " (v) @ S (w).

il il =i

3.1.2. Very symmetric multiplication. Generalizing the case of 2 factors, we may consider
D, (V) := (V" @ P2)s,, where P2 is a free resolution of the trivial S,-module Fy. There is
a canonical map ¢: Dy,(Dy,(V)) = Dy, (V) since the LHS is represented by

(V@ P @ Pr)g ~ (V™ @ Q%)s,.xsp,

where Q° is a free resolution of the trivial S,,?S,-module Fy. The RHS is (V"™ @ P2 s, ..
and ¢ is induced by the embedding S,, ¢ S,, < Spn-

A symmetric multiplication m: Dy(V) — V is called very symmetric if there is a map
m’: D,(V) — V such that the following diagram commutes:

Do (m)

Dy(Do(V)) —— Do(V)
gl ]
Dy(V) 25 V.

(The cellular cochain complex V' = C*(X,Fy) has a very symmetric multiplication (as any
E..-algebra), see e.g. arXiv:0106024, §2).



Then the following diagram commutes up to homotopy:

D3 (m)
—_—

Dy(VaV) —— Dy(Dy(V)) Dy(V) 25V

d H

Do(V) @ Dy(V) 225 VoV  —— Dy(V) —25 V.

So passing to cohomology and applying the above Proposition, we obtain the Cartan for-
mula 1.7.1. In other words, the total Steenrod square Sq(x) := 3 ., Sq"(z) is a multiplica-
tive operation.

3.1.3. Corollary. Recall H*(RP>®,Fy) = Fy[r]. We have S¢*(r") = (})7"t*.

Proof: degt =1 = Sq"(7) =0 for n > 1, and Sq¢'(7) = 72. Hence the total Steenrod
square Sq(1) = Sq¢°(7) + Sq¢'(r) = 7 + 72. By multiplicativity, Sq¢(7") = (7 + 72)" =
D 0<k<n (o). U

3.2. Odd primes. We consider the complexes of IF,-vector spaces. Contrary to 3.1.2 we
denote by Py a free resolution of the trivial S,-module F, (as opposed to Fy). We define
D,(V) = (V¥ ® P3)s,- A symmetric multiplication on a complex V' is a morphism of
complexes D,(V) — V. The cochain complex of a topological space C*(X,F,) can be
equipped with a symmetric multiplication.

Similarly to 2.2, any homology class in H,(S,,F,) defines a cohomological operation
H"(V) — H 7'V, If n = 2m, and r = 2(p — 1)(m — ), the homological class dual to
t=m=) ¢ [p-Dim=i) (g T ) (see Exercise 4) defines an operation P* = St?P~Di in-
creasing cohomological degree by 2(p — 1)i. In particular, P™ on H?™V is nothing but
raising to p-th power. These operations are extended to odd cohomology by stability (or
else one can use the homological classes dual to tP~17t?=27 to handle the odd degrees).
For the cochain complexes of topological spaces, these operations together with the Bock-
stein homomorphism 3, generate the Steenrod algebra A,. The Cartan formula holds true:
Pt(zy) = 3214 jm P(@) PP (y). Also, By(zy) = By(x)y + (1) 7z By (y).

For the unification of notation, in case p = 2 we set P" := S¢**. In fact, already
B,, P, PP, PP’ PP’ .. generate Ap.

3.3. Comultiplication in the Steenrod algebra. Since the cohomology H*(X,F,) is
represented by the Eilenberg-Maclane space K (F, k), the supercommutative multiplication
on cohomology gives rise to multiplication K(F,,[) x K(F,,j) — K(F,,l + j). This in turn
induces a coproduct on the cohomology of Eilenberg-Maclane spaces, and gives rise to a

supercocommutative Hopf algebra structure on A,. For an operation ¢ € A, the coproduct
A =>"0'00! € A,® A, satisfies

Ozy) = (—1)%B% 9576/ )6/ (y).
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In particular, AB, = 8, ® 1 +1® §,, AP* = Zszk P! ® Pi. The dual Hopf algebra
Ay = Hom(A,,F,) is called the Milnor algebra: a supercommutative graded algebra with a
non-cocommutative coproduct.

3.3.1. Theorem (Milnor, 1958). A} =~ Ag,(70,71,...) @ Fp[€1, &, .. ], where &, is the lin-
ear dual of PP""'PP""° ... PPP' and 7, is the linear dual of PP"" PP"" ... PPP'3, The
coproduct is given by

=Y o8, ur)=10n+ > 0L,

i+j=n i+j=n
(we set §o = 1).

4. APRIL 17TH

4.1. Group automorphisms of the additive supergroup. In this section p is odd. We
set A := Ag,(¢), dege = —1. We view the algebra H'(L;O, A) (see Exercise 3, April 10th) as
the algebra A[A]IFLI} of A-valued functions on the superline A]IFLI with coordinates ¢, degt = 2,
and 7, deg7 = 1. The Steenrod algebra A, acts by cohomological operations on H*(Lp°, A)
(more precisely, a(x + ey) := a(x) + (—1)%8%a(y)). Composing with coproduct A: A, —
A, ® Ay, one can take tensor product of Hopf algebra modules, so A4, acts on H*((Lp°)*", A)
for any n. This action is effective for n — oo, and thus A, is realized in endomorphisms of
something that we presently describe.

We will consider the A-valued functions A[t, 7] on the formal neighbourhood of the origin

&;‘: in Am that is formal Taylor series with topological A-basis t"7°, n € N, s =0,1. We
have

flt+t,m+m) =Y A f(t,T),
1 90" 0°

where A, s = 15 5 18 a continuous A-linear endomorphism of Aft,7]. The algebra
End(Aft, 7]) of all continuous A-linear endomorphisms of A[t, 7] (not respecting the algebra
structure!) is described in Exercise 5 (April 10th). Its multiplicative group contains the sub-
group Aut(A[t, 7]) of automorphisms respecting the algebra structure, i.e. automorphisms of

the formal neighbourhood &%Llof the origin of our superline.
Moreover, there is an evident structure of the supergroup G on A%'pl, and we can consider

the automorphisms of the formal supergroup @}1‘1 (i.e. the automorphisms of 1&11;: respecting
the addition operation). Furthermore, among those we can consider the ones that act trivially
on the associated graded of the filtration of its Lie algebra arising from G, C Gl

automorphism like this ¢ € Aut(A[t, 7]) acts as

() Py =t+ Y &t plr) =7+ Ft"

i>1 i>0

A typical

for certain & € A% 7 € A7'. Such automorphisms form a subgroup Aut,(A[t,7]) C
Aut(Aft, 7]).
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4.2. Coaction of A’ on A[t,7] (Buchstaber, 1978). We consider the A-algebra H :=

A ® AY with free polynomial generators &,&,, ..., deg& = —2(p* — 1) and free exterior
generators 1y, 71, ..., degt; = —2p' + 1. We have a coaction ring homomorphism
o: At, 7] = H oA Alt, 7], t—t+ Z&t”i, T— T+ ZTitpi
i>1 i>0

(the universal automorphism of Gt acting trivially on the associated graded of the filtration

of its Lie algebra arising from @a C A}l'l) and the composition (of universal automorphisms)

ring homomorphisms

Aft, 7] 5 H @p Aft, 7] <225 H @p (H @a AL, 7]),

t— gOl(t) =t+ Zfljitpi —> (,Dg(t) + Zfl,iQOQ(t)pi =t+ Z ( Z 61,1’ 0% £§jj)tpn,

i>1 i>1 n>1  itj=n
T = 901(7_) =T+ ZTLitpi — QOQ(T) + ZleigOQ(t)pi =7+ Z (1 K Ton + Z T1, ®€g;~)tpn,
i>0 i>0 n>0 i+j=n
where 5170 = 6270 =1¢€ AO.
It follows that the ring homomorphism p: A — A7 ® AY of 3.3.1 equips A} with a struc-

ture of Hopf algebra, and ¢ equips A[t, 7] with a structure of H = A ® A/-comodule. Note
that A, = (A))" = Hom™*"(A,, A) = Homy"(H, A) (restricted dual). Hence we obtain an

embedding v: Aut,(A[t, 7]) — 121\; into the multiplicative group ﬁ; of the completed Steen-

rod algebra zzl\p. Its image consists of all the linear maps in Ifo?leven(AX,A) (nonrestricted
dual) that are algebra homomorphisms.

4.3. Action of A, on Aft,7]. We write down explicit formula for the action of A, on
A[t, 7] dual to the coaction of AY on Aft,]. For a sequence I = (s, 11, 81, ..., Mg, 5,0, . . .)
we set (&, 7)1 = 706" i - &gk These monomials form a basis of Fy-vector space AY.
We denote by P; € A, the dual basis element. In particular, we will have the Bockstein
By = Puy,.), and the Steenrod powers P" = Py 0,0,.). Any element a € A, can be written
as ) a,ryr Pr, where a1 € A, and dega - = deg(é, 7)! (mod 2). We will also need the

completed algebra A, with topological basis {P;}. The embedding
v Aut,(Aft, 7]) — A\;
takes ¢ € Aut,(A[t, 7]) with parameters &, 7; (see (1)) to v(p) = S.(§,7) Pr € A,.
If we set @p(t) =t +1tP, pp(T) =7, and @g(t) =t, pp(T) = T + €t, then

Y@p) =14 P", v(@s) =1+ By
n>0
By Taylor expansion, for f(t,7) € A[t, 7] we have
pr(f(t,7) = fE+17,7) =D "Ny of(t,7),

n>0
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@ﬁ(f(tv 7_)) = f(tv T+ Et) = f(t> T) + €tA0,1f(t, 7—)7

so that ()é_?p = Zn>0 tpnAmo, @B =1Id +8tA0)1.
Looking at the composition

Aut,(Aft,7]) & A A, % End(A[t, 7])

we conclude that
1 0" 0
Py =t""A, g =tF"——, = et—.
p( ) ,0 n' 8tn p(ﬁp) € 87'

And this is nothing but the action of A4, on H*(L°, A).

4.4. Thom isomorphism (1952). Given a vector bundle ¥V — B of rank n we choose a
fiberwise metric and consider the corresponding sphere bundle S(V) — B bounding the disc
bundle D(V) — B. The Thom space Th(V) is the quotient D(V)/S(V). If B is compact,
this is the one point compactification of V. We make one of the following two assumptions:
either the coefficient ring of cohomology is Fy, or V is oriented (i.e. A"V\ B has 2 connected
components, and we choose one of them) (and then the coefficient ring of cohomology is
arbitrary). Then there is a unique Thom class ty € H"(Th(V)) such that

(a) the restriction of ty to any fiber D"/S"~! ~ S" is the generator h of H"(S™).

(b) For any ¢ € N, the product with ty, gives the Thom isomorphism ®:

H'(B) = H'(D(V)) —» H"™(D(V),S(V)) = H""(Th(V))
V!
(in particular, ty, = ®(1)).
Indeed, consider the fiberwise quotient £ := D(V)/pS(V) (a sphere bundle over B with a
canonical section s: B — £ such that Th(V) = £/s(B)). The Gysin sequence of £ % B:

.= H(B) L H (&) - HY(B) — . ..

is split by s*, so that H"*(£) = H"™(B)®H'(B), and the relative cohomology H"(Th(V)) =
H™"(&/s(B)) = H""(€,s(B)) = H(B). By the construction of Gysin sequence, the latter
Hi(B) is actually the Ey" = H'(B) @ H"(S™) term of the spectral sequence of £ % B. We
set ty == 1® h € H°(B) ® H"(S") (or rather its image in E,), and we are done by the
multiplicativity of spectral sequence.

4.5. Stiefel-Whitney characteristic classes (1935-1936). Now we consider the coho-
mology with coefficients in Fy. We set w;(V) := ®~1S¢'®(1) € H(B,F,). The total Stiefel-
Whitney class is w(V) := >, w;(V). They enjoy the following basic properties.

4.5.1. Dimension. wy(V) = 1, and w~, (V) = 0 for rkV = n.
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4.5.2. Naturality. Consider a cartesian diagram

v Ly

Lo

B ', B

Then w;(V') = f*w;(V). Indeed, by Exercise 2, the Thom isomorphism is natural: ¢'f* =
£

4.5.3. Whitney product formula. wy(Vi @ V) = >, i, wi(V1)w;(V2); in other words, the
total class w(V; @ Vs) = w(Vy)w(Vs). Indeed, for vector bundles V; — By, Vi — By over
different bases (later on we will set By = By = B), we have

Dy, v, (W1 X Vo)) = Sq(ty, xv,) = Sq(ty, ®ty,) = Sq(ty,) ® Sq(ty,)
by Cartan formula. The RHS is

Dy, (w(W1)) © Py, (w(V2)) = Py, (w(V1) @ w(V2))

by Exercise 2. Applying ®3,,, we obtain w(V; xV,) = w(V;)@w(V,). Now set By = By = B
and restrict to the diagonal Ag C B X B.

4.5.4. Normalization. Let O(—1) = &; be the tautological line bundle over RP'. Then
w1 (81) is the unique nonzero element 7 € H'(RP!, Fy). Indeed, the disc bundle D(S;) is the
Mobius band M bounded by the circle 9M. On the other hand, M is homeomorphic to the
closure of RP? \ D?. We get H*(M,0M) = H*(RP?, D?). Hence the natural isomorphisms

HY(Th(81)) = H'(D(S1), S(81)

)=
Hence the Thom class ts, € H 1(Th(81), [Fy) corresponds to the generator 7 € H'(RP? Fy),
and S¢'(ts,) = t, corresponds to Sq¢'(7) = 72 # 0. Hence wy(S;) = &' S¢'(ts,) # 0.

HY(M,0M) & HY(RP?, D) = H'(RP?).

5. APRIL 24TH

5.1. Principal G-bundles. A principal G-bundle or a G-torsor €& % B is a space &
equipped with a fiberwise right G-action simply transitive on each fiber of p. For example,

given a k-vector bundle V — B of rank n, the space £ of fiberwise bases is a GL(n, k)-torsor
GL(n,k)
over B. Conversely, V =& x k" is the associated vector bundle (here k = R, C, H). If a

vector bundle is equipped with a metric, and we consider the space of orthonormal fiberwise
bases, we obtain a principal O(n)-bundle (or a principal U(n)-bundle).

We will only consider locally trivial bundles. They can be specified by a covering B = |J U,
and transition functions p.g: U, N Uz — G.
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5.1.1. Lemma. Let &% B x I be a G-torsor over the product of compact B with the interval
I =10,1]. Suppose G is a Lie group. Then &|pxo >~ E|px1-

Proof: We may assume U, = Vi X (ay, ar+1) where B = [JVj, and I = (J(ak, ax+1)-
This reduces the problem to the case (a,ax11) = [0, 1]. So we have the transition functions
oyp(z,t): (V, NV3) x I — G. We may also assume that ¢,5 extends continuously to the
closure VW NV g, and hence it is uniformly continuous. Hence there is an open neighbourhood
e € U C G such that U ~ R" (where r = dim G) and @, 5(x,t1)p (2, t) € U iy, ty € 1.
Moreover, we may assume that U---U C G (3N-fold product, where N is the number of
charts Vj) is also isomorphic to R".

We will construct functions hg: Vg — G, 1 < 8 < N, by induction in 8. We start with
hi(z) = e. We set hy(7) := ©15 (2, 1)¢12(x,0) on V; NV, and extend it to V, with values
inU-U ~R". Now hg(x) := gogﬁl(x,l)hw(:c)gowg(:r,O) on V., NV for v < B. It matches
on triple intersections by induction assumption, and takes values in U ---U ~ R" (33-fold
product). So it can be extended to the whole of Vj with values in U ---U ~ R".

Thus ¢.(z,1) = hy(x)p,s(z, O)hgl(x), and hence &|pxo ~ E|px1- O

5.1.2. Corollary. Any G-torsor over a disc D" is trivial.
Proof: Consider its pullback to D™ x [ — D", (z,t) + tx. O

5.2. Classifying spaces. Theorem. Any G-torsor & % B over a CW-complex B is iso-
morphic to a pullback of EG — BG for an appropriate ¢: B — BG. The pullbacks ¢] EG
and ¢{EG are isomorphic if and only if ¢, ¢g: B — BG are homotopic.

Proof: We have to construct a G-equivariant map F': £ — EG by induction in skeleta
of B. Suppose it is constructed for &|g, , 5, and we want to extend it through a cell
Xo: D" — €? C B. The pullback x*€& is trivial. Since x,(S"!) C sk, ; B, the existing
F,_1 gives an equivariant map F,_i(z,g9) = F,_1(z,1)g € EG, z € S, g€ G.

Since m,_1(EG) = 0, the map F,_i(z,1) extends to F,(z,1): D" — EG. We set
F.(x,g9) = F,(z,1)g, and thus add all the n-cells one by one.

The second claim follows if we replace B by B x I, and sk,_; B by B x {0} UB x {1}. O

Thus, the isomorphism classes of G-torsors over a CW-complex B are in a natural bijection
with Ho(B, BG).

5.2.1. Vector bundles. Recall that BGL(n,k) = Gr(n, 0o, k). The classifying map ¢: B —
Gr(n, 00, k) for the GL(n, k)-torsor corresponding to a vector bundle V % B, is obtained
from an embedding V < B x k¥ for N > 0. To construct this embedding for a compact
B choose a trivializing covering B = |JU,, inscribe a finer covering V,, C U, such that
V. C U, and a still finer covering W, C V, such that W, C V,. Pick a continuous function
fa: B — ksuch that f,ls. =1 and fo|p\v; = 0.

Let qo: V|y, — K" be the trivializing projection. Set ¢, (v) = fo(p(v))qa(v) if v € p~1(U,),
and ¢}, (v) = 0 otherwise. Finally, @ := (p,¢,): V — B x @ k" is the desired embedding.
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5.3. Cohomology ring of Grassmannian. Theorem. The cohomology ring of the
Grassmannian H*(Gr(n,00,R),Fy) = Folw(S,), ..., w,(S,)], where S, is the tautological
n-dimensional vector bundle over the Grassmannian.

Proof: First, there are no relations between w;(S,,). Otherwise, since S,, is the universal
bundle, such a relation would be universal (by naturality of Stiefel-Whitney classes). But
H*((RP®)*" Fy) = Fofr, ..., 7], and w(SM @ ... 8™) = (1 + 1) (1 + 7,), hence
wi(Sfl) D...d Sl(n)) is the elementary symmetric polynomial e;(71,...,7,). And there are
no relations between these guys.

By Exercise 2, dim H*(Gr(n, 00, R),Fy) equals the dimension of k-th graded component
of Fy[wi(S,), ..., w,(S,)], and we are done. O

Thus for a vector bundle V — B and the corresponding classifying map ¢: B — Gr(n, oo, R)
the Stiefel-Whitney classes w; (V) are the pullbacks ¢*w;(S,) of the canonical generators of
the cohomology ring H*(Gr(n, 0o, R), Fs).

6. MAY 1sT

6.1. Obstructions. Given a real vector bundle V — B of rank n, we choose a metric and
consider the corresponding O(n,R)-torsor &€ — B. The group O(n,R) acts on the Stiefel
variety St(k,n,R), and we consider the associated bundle

O(n,R)
Sty(k,n,R) =& x St(k,n,R) — B.

Similarly to Exercises of 06.03.2020, there are obstruction classes in H" (B, 7,.(St(k, n,R)))
to constructing sections of Sty (k,n,R), i.e. k-tuples of orthonormal sections of V. Here
7-(St(k,n,R)) is a local system on B with stalks m,.(St(k, n,R)).

6.1.1. Lemma. a) 7. (St(k,n,R)) = 0 for r < n —k; b) m,_,(St(k,n,R)) = Z if k =1 or
n — k is even, and Z/27 otherwise.

Proof: We proceed by simultaneous induction in n, k starting with St(1,n,R) = S
Consider the fibration projecting to the first vector

n—1

St(k—1,n—1,R)
—_—

(2) St(k,n,R) snt

and the long exact sequence
o= T (8™ = m(St(k — 1,n — 1,R)) — 7,(St(k,n, R)) = 7,.(S"7) — ...

If r < n — 2, the middle arrow is an isomorphism, and we are done for k£ > 2 by induction.
If k =1, then St(k,n,R) = S™ L. If k = 2, and r = n — 2, then the above sequence takes
form

coo > L =7 — m—2(St(2,n,R)) — 0,
and we need to prove that the left arrow is 1+ (—1)""!. The fibration (2) is the fibration
of unit tangent vectors 775" ! Sn—f Sn=1. We take the identity spheroid D"~!/S"™2 =
gn=1 14y gn=1 and lift it to T15™1 so that the boundary S" 2 C D" ! goes to a fiber S™"2.
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To this end we need a vector field on S™~! with one singular point. There is a vector field
with two singular points (the gradient flow from the north pole to the south pole). It follows
that for a vector field with a unique singular point the index at this point is 1+ (=1)""1. O

Thus the first nontrivial obstruction lies in H"*1(B, 7, _(St(k,n,R))), and the corre-

sponding local system has stalks Z or Z/2Z. For unification we reduce modulo 2 in both
cases; then the local systems become trivial, and we obtain the reduced obstruction classes
OZ(V) € H%B,]Fg)

6.2. Theorem. 0;(V) = w;(V).

Proof: Due to naturality of both theories, it suffices to consider the universal case S, —
Gr(n,o00,R). Then 0,(S,) = fi(wi(Sn),...,wi(S,)) = fl(wi(Sn), ..., wi—1(Sn)) + Aw;i(Sy),
where A € Fy. First, we claim f/ = 0. Indeed, consider an auxiliary vector bundle V =
Si1 @R — Gr(i — 1,00,R). This vector bundle has n — i + 1 orthonormal sections
for trivial reasons, hence the obstruction o;(V) € HY(Gr(i — 1,00, R),Fy) must vanish. But
0i(V) = f(wi(Si—1), .- -, wi—1(Si—1)) +0, and since wy(S;_1), ..., w;_1(S;_1) are algebraically
independent, ' = 0.

It remains to prove A = 1, i.e. 0;()) does not vanish identically. We start with i = n. We
take V = Q,, — RP™ (the universal quotient bundle): its fiber over a point of RP" represented
by a point v € S™ C R""! is the orthogonal hyperplane ut. A section u — uy — (ug, u)u
vanishes at a unique point represented by ug. If we take uy in the middle of the unique
n-cell of RP™, then we obtain a section over sk,_; RP", and the obstruction to its extension
associates to the n-cell the generator of m,_;S"! = Z (reduced modulo 2). So it does not
vanish, and A\ = 1.

If i <n, wetake V = Q; ®R"~* — RP! and compare with the description of the generator
of m;_1 St(n — i+ 1,n,R) in Lemma 6.1.1 to deduce A = 1.

In other words, the first obstruction to the existence of sections in the above cases hap-
pens to be the last one, and its vanishing would imply the existence of sections that would
contradict the nontriviality of w; (V). O

7. MAY 8TH

7.1. Stiefel-Whitney classes of the tangent bundle. We will use the Poincaré du-
ality for smooth compact manifolds with coefficients in Fy. In particular, the isomor-
phism D: H,(M,Fy) = HYmM=¢(\f Fy). The fundamental class of a smooth submanifold
M' c M will be denoted [M'] € Hgimrr(M,Fs). The tubular neighbourhood of M’ in M
is isomorphic to the disc bundle D(Nyp/ar) of the normal bundle of M’ in M. Hence the
Thom space Th(Nyyv /) is isomorphic to the quotient of a tubular neighbourhood mod-
ulo its boundary, and H*(Th(Nuy /) = H*(M, M \ M’). The image of the Thom class
Ay g € HEOUM M (Th(N g jar)) = HEoWmw M (MM M) in Heodmar M (M) s the funda-
mental class D[M'].
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The fundamental class of the diagonal
D[Ay] =Y &®& € H™M(M x M,F,),

the sum is taken over a homogeneous basis of H*(M), and {{} is the dual basis (with
respect to the Poincaré duality).

The slant product H (M x N)® H;(N) — H'(M), £®n — &/n arises from the Kinneth
formula and the usual pairing. In particular, D[A,]/[M] = 1.

The tangent bundle T'M is isomorphic to the normal bundle NAM/MX M, and so the disc
bundle of the tangent bundle is isomorphic to a tubular neighbourhood of diagonal in M x M.
Hence the Thom space Th(T'M) is isomorphic to the quotient of a tubular neighbourhood
modulo its boundary, and H*(Th(TM)) = H*(M x M, M x M \ Ay). The image of the
Thom class tyy € HEM(Th(TM)) = H*(M x M, M x M\ Ay) in HYM (M x M) is the
diagonal class D[Ay,]. By definition, Sq'(tras) = (w;(TM) ® 1) - trar, hence Sq'(D[Ay]) =
(w;(TM) ® 1) - D[Ap]. Since the slant product commutes with the left multiplication by
H*(M), we get

(3) Sq'(D[AM)/[M] = ((w(TM)®1)-D[Awn])/[M] = wi(TM)-(D[An]/[M]) = wi(TM).

7.1.1. Corollary. If M; and M, are homotopy equivalent (in particular, the cohomology
rings are isomorphic H*(M;,Fy) = H*(Ms,Fs)), then w;(T' M) = w;(T'M,), i.e. the Stiefel-
Whitney classes of the tangent bundle are independent of a choice of a smooth structure.

7.1.2. Wu formula. Note that the total Steenrod square Sq is an automorphism of the ring
H*(M,Fy). We will denote S¢™ the inverse automorphism. Then for any homology class
h € Ho(M,Fy),
(S¢™w(TM), h) = (Sq(Dh), [M]).

Indeed, let n = dim M, and define vM € H'(M,F,) by the identity (v} - & [M]) =
(Sq'(€), [M]) for any € € H" {(M,Fy). Set v =1+ oM 4 ...+ oM. Then (M - & [M]) =
(Sq(€),[M]). In particular, (Sq(Dh),[M]) = (v™ - Dh,[M]) = (v™ k). We have to check
w(TM) = Sq(vM). But

VM =GN g M) =) 6(Sq(€)), [M]), hence
Sa(w™) =Y Sq(€)(Sa(€;). [M]) = 3 (Sa(€)@Sa(€))/[M] = Sq(D[Aw])/[M] 2 w(TM).

7.2. Stiefel theorem. The tangent bundle of an orientable compact 3-dimensional manifold
is trivial.

Proof: 1t suffices to construct two linearly independent vector fields on M, i.e. a section of
Strur(2,3,R) — M. Since St(2, 3, R) = RP3, we have 7, (St(2, 3, R)) = Z/27Z, 7 (St(2,3,R)) =
0. The first obstruction to the existence of our section is wo(TM) € H?*(M,Fy). If it van-
ishes, the next obstruction vanishes as well, and the desired section exists. So it remains to
compute wy(TM).

The Bockstein homomorphism Sq¢' = 8o: H*(M,Fy) — H3(M,TFy) is defined as the com-
position H*(M,Z/27) — H*(M,Z) — H3*(M,Z/2Z). The middle group is Z since M is
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orientable, hence the left arrow vanishes, and Sq' = 0: H?(M,Fy) — H*(M,F,). More-
over, S¢* = 0: HY(M,Fy) — H3(M,Fy) and S¢® = 0: H(M,Fy) — H*(M,F,) for degree
reasons. Hence (Sq(Dh),[M]) = 0 for deg Dh < 3, and hence (S¢™w(TM),h) = 0 for
degh > 0. We conclude that S¢™w(TM) € H°(M,F,), and hence w(TM) € H°(M,Fs),
and finally wy(T'M) = 0. O

7.3. Chern classes. We know from §1.5 that BU(k) = Gr(k, 00, C), and H*(BU(k),Q) C
H*(B(SY)*, Q) = Qlz1, . . ., ] is the subalgebra of symmetric polynomials generated by the
elementary symmetric polynomials ey, ..., e,. In fact, H*(BU(k),Z) = Zle, ..., ex]. For a
complex rank k vector bundle V — B with the classifying map ¢: B — BU(k), the Chern
classes are defined as ¢;(V) := ¢*¢;, ¢ = 1. The total Chern class ¢(V) = S5, ci(V). We
have ¢c(V & V') = ¢(V) - ¢(V') since

em 21, -+ s Zhy Zhils - - s Zhpl) = Z ei(21y -y 2k) € (Zhgts - - oy Zhtl)
i+j=m

7.4. (Semi)-infinite Grassmannian. The union khm Gr(k, 00,C) =: Gr(o0,200,C) is an
—00

H-space with respect to the direct sum. So its cohomology is a Hopf algebra Q[eq, e, .. .|
with comultiplication A(e;) =e; ® 1+ 1 ® e;.

More precisely, consider a category % of C-vector spaces (of finite or countable dimension)
equipped with positive definite hermitian form; the morphisms are isometric embeddings. For
Ve®, dimV =k, weset B(V) :=Gr(k,V®C>®). For f: V- W and P € Gr(k,V ®@C>)
we set B(f)(P) := (f @ Ide=)(P) & f(V)t @y, € B(W), where y; = (1,0,0,...) € C*. We

get a functor from the category of finite dimensional hermitian spaces to topological spaces.
dim V <oo

If W is of countable dimension, then we set B(W) := U B(V). We get a functor B
Vew
from ¥ to topological spaces. Clearly, B(C*) = BU(k), B(C*) = BU(oo). We define a
monoidal structure &: B(V) x B(W) — B(V & W) first for finite dimensional V, W, and
then for arbitrary V, W € € as the direct limit. We get &: B(C>)x B(C*®) — B(C*®C*>).
Now compose it with B(f) for an isometry f: C> @ C® =5 C™ to get the desired product
BU(o0) x BU(c0) — BU(oo). All the required properties follow from the fact that the
space of isometries C*° — C* is contractible. This in turn follows from the contractibility

of Isom(C*, C>) = St(k, oo, C).

8. MAY 15TH

8.1. Rational cohomology of real Grassmannians. Theorem. (a) There is an isomor-
phlSHl H.(Gr+(2n7 00, R)a Q) = Q[p17p27 <o Pn—1, eu2n]7 where degpz = 427 deg €Uop = 2n7
(b) H*(Gr.(2n 4+ 1,00,R), Q) ~ Q[p1,p2, - - -, Pn], where deg p; = 4i;
(c) The standard embedding Gr(2n, 00, R) < Gr;(2n + 1, 00, R) induces the homomor-
phism p; — p;, 1 <i <n—1, and p, — eu3,. The standard embedding Gr (2n+1, 00, R) <
Gry (2n + 2,00, R) induces the homomorphism p; — p;, 1 < i <n, and eug, 2 +— 0;
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(d) Let V be a real oriented vector bundle over B, and ¢ the corresponding classifying
map. Setting po = 1 and p(V) = >_ ¢*p; we get p(V & V') = p(V) - p(V').

Proof: For a compact Lie group K with a maximal (Cartan) torus 7' C K, the Weyl
group W is the quotient of the normalizer of T" in K modulo T. It acts on the Lie algebra
t, and we argued in §1.5 that H*(BK,Q) = Q[t|'Y. For K = SO(2n + 1), t* has a basis
Yl -+ Yn, Where W =: W(B,,) := S, x Fy acts by permutations and sign changes. For
K =8S0(2n), t* has a basis yi, ..., y,, where W =: W (D,,) acts as the index 2 subgroup of
W(B,): S, x Ker(>_: Fy — Fy). In particular, eus, = y; - - - y,. Everything follows.

By the way, by a Chevalley theorem, the restriction Q[€]* — Q[t|". The corresponding
invariant functions on € are Tr(A%*X) + p;, and Pfaff(X) — eu.

Here is an alternative topological argument. Consider a fibration
SQk—Q -
St(2,2k, R) Z— §2+1
identifying St(2, 2k, R) with the unit tangent bundle 73.5%~! as in the proof of Lemma 6.1.1.
The action of S* on S?*~! C C* generates a global nonvanishing vector field, i.e. a section
of the above fibration. It follows that H*(St(2,2k,R), Q) ~ Ag(azk—2,ask—1). We prove (a)
by induction in k considering the spectral sequence of the fibration

(4) BSO(2k — 2) 2220, pgo(2k).

We have doy,_1(agx_2) = 0: otherwise dox_1(agx_2) = v # 0, and do_1(ag_ov) = v? = 0,
hence E2F=1.2k=2 - (); however, the odd cohomology H*~3(BSO(2k — 2),Q) = 0 by the
induction assumption. Thus dy,_1 = 0.

At this stage we already see that H°Y(BSO(2k),Q) = 0. Indeed, this is the first row
E;’O of our spectral sequence. Among the higher differentials only doy, and dy._o can possibly
land into the first row, but they can possibly kill only even degrees elements, so the odd degree
elements in the first row will survive and give the odd degree elements in E., — contradiction
to the induction assumption.'

Since deg agi_1 is odd, we must have dogasr_1 = w # 0, and

dgki agk—1 * EQ.]: —w - EQ.,:

Indeed, the kernel of day, in ask—1 - ESy would contribute to the (nonexisting) odd degree terms
of Ew. In particular, do, embeds agy,_q ®E5’O mto w-EQ"O, and thus w is not a zero divisor in
E3°. Also, E2* ~ E®0 @ ag,_» B0 is the associated graded of Q[py, ..., pr_2, eUsy_s]. Hence
Pis-- o Pe2 € BY, and @y 5 = ag o, €y, 5 € EYY —
E;;O = Q[p17p27 <oy Pk—2, eugk-?L and E2.70 = @[p17p27 <oy Pk—2, eugk—Q? w]
Indeed, if w is not algebraically independent, the relation it satisfies is divisible by w: other-
wise after doy, kills w we are left with a relation on py, ..., py_o,eus, . But a minimal degree
relation divisible by w implies that w is a zero diwvisor, while we know already that w is not
a zero divisor in E3°.

11 emphasize the claims omitted in the argument that I screwed up during the lecture.
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Set p_1 := eu3, ,. Then Ey® = H*(BSO(2k),Q) = Q[p1,...,pr_1,w]. We define the
Euler class euy, € H*(BSO(2k), Q) as w (the transgression of ag,_1), and (a) is proved.

Consider the spectral sequence of the fibration
BSO(2k — 2) 225 BSO(2k — 1).

It has just two nonzero rows: E2°’0 and ES’%_2 = agk_gEg’o. If do_1a9—o = v # 0, then
dop—1(asx_ov) = v* = 0, and hence Ei’f*l’%*? # 0. It contradicts the odd cohomology
vanishing of BSO(2k — 2). Hence dog_1a9;—2 = 0, and dop—1 = 0, and E3* = E22. Hence the
odd cohomology of BSO(2k — 1) vanish. Now consider the spectral sequence of the fibration

BSO@2k — 1) =% BSO(2k)

with E3®* = H*(BSO(2k),Q) ® Ag(agk—1). The odd cohomology vanishing of BSO(2k — 1)
implies dorasy_1 # 0. More precisely, comparing with the above computation for the
fibration (4) we see doraor—1 = w, hence do(agr—17) = wx. Hence E3p., = E =
Qlprs. .-, pr1] = H*(BSO(2k — 1), Q).

To prove (d) we trace back the above construction of p; and check that its pullback under
BSO(2)*" — BSO(2n + 1) is the i-th elementary symmetric polynomial of y?,...,y2. O

8.1.1. Nonoriented case. We have a two-fold covering BSO(k) — BO(k) = Gr(k, oo, R).
Hence H*(Gr(k,o00,R),Q) = H*(BSO(k),Q)%/*2. The classes p; are Z/2Z-invariant and
descend to the same named classes in H*(Gr(k, 00, R), Q). The class euy, is multiplied by

(=)™

8.2. Pontriagin classes. The natural embedding SO(n) < U(n) gives rise to =: BSO(n) —
BU(n) corresponding to the operation of complezification of real vector bundles. At the level
of Cartan algebras (i.e. for the induced map BSO(2)*l2) — BU(1)*"), say for n = 2k even,
the corresponding map (on cohomology) is z; — y;, 2k — =i, 1 < i < k. The odd elemen-
tary symmetric polynomials in z go to zero, and Z*eg, (21, ..., 2,) = (—1)"en(¥2, ..., y).
In other words, Z*ca;ni1 = 0, Z*com = (—1)"pp-

Conversely, the natural embedding U(n) < SO(2n) gives rise to ©: BU(n) — BSO(2n)
corresponding to the operation of restriction of scalars from C to R (taking a complex vector
bundle V of rank n to a rank 2n real vector bundle Vg). At the level of Cartan algebras
(i.e. for the induced map BU(1)*™ — BSO(2)*"), the corresponding map (on cohomology)
is y; — 2;, 1 < i < n. Hence ©*euy, = ¢,.

8.2.1. Definition. For a real rank k vector bundle ¥V — B the Pontriagin classes are defined
as pi(V) == (=1)'ci(V ®& C), po = 1. The total Pontriagin class p(V) = .5 p:i(V). We
have p(V @ V') = p(V) - p(V').

Equivalently, p;(V) = ¢*p; for the classifying map ¢: B — Gr(k, oo, R).
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9. MAY 22ND

9.1. The Euler class. Recall the setup of §4.4. Let V — B be an oriented real vector
bundle of rank m. The Thom class

ty € H™(Th(V),Z) = H™(D(V), S(V); Z) — H™(D(V),Z) = H™(B,Z) > eun(V)

goes to the Fuler class. Equivalently, eu,,(V) = ®1(ty - ty); in particular w,,(V) = eu, (V)
(mod 2). The Euler class is natural for the pullbacks of oriented vector bundles, and changes
sign if we change the orientation. In particular, if the rank m is odd, then 2eu,,(V) = 0
(since the opposition changes orientation), so that eu,,(V) = w,,()V). The same argument as
in §4.5.3 proves el (V & V') = eu,, (V) - euy (V).

The same argument as in §6.1 defines the obstruction o,,(V) € H™(B,Z) (where Z =
Tm—1(St(1,m,R))) to constructing a nowhere vanishing section of V. The same argument as
in §6.2 proves 0,,(V) = eun, (V). In case m is even, and ¢: B — BSO(m) is the classifying
map for V, the same argument proves eu,,(V) = ¢*eu,,. In particular, the top Chern class
of a complex vector bundle is the Euler class of its restriction of scalars from C to R.

9.2. Chern and Pontriagin numbers. A partition A = (A} > Ay > ... > X\, > 0) can
be written in the form (i) where m; is the number of occurences of i among {\,}‘_,. For
a smooth compact complex manifold M of complex dimension n and a partition B(n) >
A= (i) we set C\[M] = (" (TcM) -- - (Tc M), [M]) (Chern classes of complex tangent
bundle). Similarly, for a smooth compact oriented manifold NV of real dimension 4n we set
PAIN] = (g (TN} - pii= (TN), [N). For example,

C\[CP] = f[ (” N 1), P\[CP*] = f[ <2”;: 1),

r=1 r r=1

since ¢;(TcCP™) = (") 2% where 2 is the oriented generator of H*(CP",Z).

9.3. Monomial symmetric functions. A basis in the ring A of symmetric polynomials in

T1, T, ... with integral coefficients is formed by {ey := ey, - - €y, }rep (elementary symmetric
Ae

functions). Another basis is formed by the monomial functions my := > x?%l) + @, (sum

over all permutations, but every monomial enters with coefficient 1). For example, m) =

i xf . Indeed, for the transposed partition A" we have ey = my«+ combination of m,, for p
lexicographically smaller than . Hence ey is an integral linear combination of {m,}, and
my is an integral linear combination of {e, }.

Substituting ¢; (resp. p;) in place of ¢; we get m§ € H(Gr(oo,200,C),Z) (resp. mh €
H*W(Gr(00,200,R),Z)). For a complex vector bundle ¥V — B, the pullbacks of these
classes with respect to the classifying map B — BU(k) are denoted m5(V) € H?MN(B,7Z).
Similarly, for an oriented real vector bundle V — B, the pullbacks of these classes with
respect to the classifying map B — BSO(k) are denoted mf (V) € H*(B,Z). Pairing
these classes for the tangent bundle with the fundamental class of a complex manifold M
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(resp. a real oriented manifold N) we get the integers m§[M] (resp. mi[N]). In particular,
m{, [CP"] = n + 1, m{, [CP*] = 2n + 1.

n)
9.3.1. Lemma. For complex vector bundles V, V" — B, we have

ms(Ve V)= > m,(V)mV),

iz
pUU=A>A

where for two partitions p = (:™¢) and v = (:") their shuffle pv is defined as (¢™i*").
Proof: my(z, Q) = Zm/:A mu(g)my(g). O

o [M ]y, [M].

9.3.2. Corollary. m§[M x M'| = Z m

pUr=A>A
|u|=dim M, |v|=dim M’

9.3.3. Proposition. Let M* M8, ..., M*" be smooth oriented compact manifolds such that
miy [M*] # 0 (e.g. M* = CP?). Then the p(n) x p(n)-matrix 0 with matrix elements

P, [M*1 x ... x M*+] numbered by pairs of partitions [A| = |u| = n, is nondegenerate.
Proof: Tt suffices to prove the nondegeneracy of another matrix 9t with matrix elements

mb M™% o) M) = 37 00—, M M- om?  [M*], where the sum runs

over (-tuples of partitions such that [v®| = );. This matrix element vanishes unless x is a
refinement of A, in particular, if £(1) < £ = ¢(X). Hence for a total order on B(n) compatible
with the partial order of refinement, the matrix 9 is lower-triangular. The diagonal entries
are mf, \[M*1]---m{, | [M**] # 0, hence " and M are nondegenerate. O

10. MAyY 29TH

10.1. Oriented cobordisms. The oriented real manifolds M, M’ of dimension k are ori-
ented cobordant if there is an oriented real manifold N with boundary M U M’ with induced
orientation M LI —M’. This is an equivalence relation, and the quotient is an abelian group
Q. with operation M + M’ := M U M’ (and with inverse —M := M with the opposite
orientation). The direct product induces a homomorphism Q; x Q,, — Qxim, hence the
supercommutative graded ring €,. Similarly to Exercise 3 of 08.05, if M*" is a bound-
ary of N4t then any Py[M*"] = 0. Hence any partition A of n defines a homomorphism
Qup — Z, M*™ — P\[M*"]. Tt follows from Proposition 9.3.3 that {CP?* x. .. x CP**}, cqn)
are linearly independent in y,,.
According to R. Thom,

(5) Qp = Mo (Th(Sk), to)

for the Thom space of the universal tautological bundle S, — Gry(k,00,R) and k£ > n + 1.
The homomorphism from the RHS to the LHS is constructed by the following
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10.1.1. Proposition. Let ¥V = B be a rank k smooth real oriented vector bundle over a
smooth manifold B. Then any continuous map f: S™ — Th(V) is homotopic to a continuous
map ¢ smooth away from the base point t, € Th(V) and transversal to the zero section
B C Th(V). The oriented cobordism class of the resulting smooth oriented m—k-dimensional
manifold ¢g~!(B) depends only on the homotopy class of f. Hence we obtain a homomorphism
T (Th(V), to) = Qpk-

Proof: First we approximate f by fy smooth away from t;. Choose an open covering
WiU...UW, of the compact f;*(B) such that each open W; C S™ lands into a local chart
U; x D1(0) (where D;(0) is the open unit ball in R¥) in the disc bundle D(V)|y,. Choose
compacts K; C W; such that f;'(B) is contained in the interior of K; U... U K,. We
will successively modify fy on the open sets Wi, ..., W, to obtain fi,..., f. satisfying the
following conditions:

(a) f; is smooth away from t, and coincides with f;_; away from a compact in W;;

(b) filk,u..uk, is transversal to B: if fi(x) € B, then df;(1,S™) + Ty,)B = Ty, Th(V);

(c) If fo(x) # to, then p(fi(z)) = p(fo(z)).

At the i-th step we know that f;_(W;) C U; x D1(0) C p~'(U;). We denote by ¢; the
projection U; x D1(0) — D1(0). We know p o f; by (¢) and have to define ¢; o f;. By (b),
0 € D1(0) is a regular value of ¢; o fi—1|(K1U...UKi,1)ﬂWi- Hence g; o f;_1 can be approximated
by a map ¢;: W; — D1(0) that coincides with ¢; o f;_; away from a compact subset of W;
and such that 0 € D;(0) is a regular value of ¢;|(x,u..uk,)rw,. We set g; o f; == ¢;.

Now the desired g := f.. Then g|k,u. Uk, is transversal to B. It remains to make sure
that g~'(B) C K;U...UK,. Since K; U...UK, is a neighbourhood of f;(B) C S™, there
exists 0 < ¢ < 1 such that |fo(y)| > ¢ for any y ¢ K U...UK, (here [t| is the euclidean norm
of a point ¢ € Th(V); in particular, |tg| = 1). Additionally to (a—c) above, we will choose
fi close enough to f;_1, so that |fi(z) — fi—1(x)| < ¢/r for any x. Then |g(z) — fo(z)| < ¢,
and hence |g(y)| #0fory € K;U...UK,. So ¢g7'(B) C K;U...UK,, and g is everywhere
transversal to B, and ¢g~!(B) is a smooth compact oriented m — k-dimensional manifold.

If g and ¢’ are homotopic maps S™ — Th(V) smooth away from ¢, and transversal to B,
then we can construct a homotopy hg: S™ x [0,3] — Th(V) smooth away from ¢, and such
that ho(z,s) = g(x) for s € [0,1], while ho(z,s) = ¢'(z) for s € [2,3]. Similarly to above,
we can modify it to h: S™ x [0, 3] — Th(V) coinciding with hy away from a compact subset
of §™ x (0,3) and transversal to B. The preimage h~'(B) realizes an oriented cobordism
between g~1(B) and ¢'~1(B). Thus, the oriented cobordism class of g~*(B) is well defined.

Finally, the addition in m,,(Th(V),ts) corresponds to the disjoint union of preimages
g~ '(B), and hence our map 7,,,(Th(V), tg) = Q4 is a homomorphism. O

10.1.2. Proposition. The homomorphism 7y, (Th(Sy), to) — €2, for the Thom space of the
universal tautological bundle Sy — Gr(k, k + p,R) is surjective for £ > n and p > n.
Proof: Given a smooth compact oriented n-dimensional manifold M we can embed it
into R¥*™ (Whitney). Consider the Gaul map from the total space of the normal bundle
Nujren to the total space of the tautological bundle over Gry(k,k + n). Compose it
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with the embedding into the total space of the tautological bundle Sy over Gry (k,k + p).
Restricting it to a tubular neighbourhood R¥*" > U 5 M and projecting to the Thom space
we obtain g: U — Th(Sy) transversal to the zero section Gry(k,k + p) < Sk such that
g N (Gry(k,k +p)) = M. We extend g to the one-point compactification S¥** = (R¥+n),
sending the complement of U to t5. The resulting map g: S¥*" — Th(Sy) gives rise to the
cobordism class of M by the rule of Proposition 10.1.1. 0

10.1.3. Proof of (5) modulo torsion. According to Proposition 10.1.2, the homomorphism
Ttn(Th(Sk), to) — Qp is surjective for k& > n. The Thom space Th(S) is k — 1-connected.
It follows that the Hurewicz homomorphism =, (Th(Sk),t0) — H,(Th(Sk),Z) is an iso-
morphism modulo torsion for r < 2k — 1 (use Theorem 1.3). We know the dimension
of Hyix(Th(Sk), Q) = H,(Gry(k,00,R), Q) by Theorem 8.1. By Proposition 9.3.3, the rank
of Q, ®z Q is at least the rank of H, (Gry(k,00,R),Q). O

10.1.4. Corollary. Q, ®z Q = Q[CP?, CP*,CPS, .. ].

10.1.5. Notation. The Thom space of the universal tautological bundle Sy over BSO(k) is
denoted MSO(k): the classifying space of oriented cobordisms. Similarly, the Thom space
of the universal tautological bundle over BU(k) is denoted MU(k): the classifying space of
stable complex cobordisms. These are equivalence classes of manifolds whose tangent bundle
is equipped with a stable complex structure, that is for some r, TM @ R" is equipped with
a complex structure.

10.2. Pontriagin numbers and homology of BSO. The tangent bundle of a smooth
compact oriented real 4n-dimensional manifold M defines the classifying map ¢: M — BSO.
Given an element h € H*(BSO,Q) we can integrate (¢*h,[M]) to obtain a number. This

way M gives rise to a linear functional H*(BSO, Q) % Q.

More precisely, M defines a degree 4n homogeneous linear functional on the completed
cohomology ring H *(BSO,Q) = Q[p1,p2, - -.]- This functional is a degree 4n element of the
homology ring He(BSO, Q) (recall that BSO is an H-space).

If M is the boundary of N, then the above functional vanishes. Thus we obtain a linear
map 7 : Qs ®z Q — H.(BSO,Q). Furthermore, since T'(M; x My) = TM; & T M,, and
the monoidal structure on BSO is given by the direct sum, 7 is a ring homomorphism.
Moreover, by Thom theorem 10.1.4, T is an isomorphism.

So any linear functional p: Qy — Q can be viewed as an element ) >°  K; € ﬁ'(BSO, Q) =
Q[p1, pa; - -], for a sequence of homogeneous polynomials K;(p1,...,p;), deg K; = i. The
condition that ¢ is an algebra homomorphism (a character) is equivalent to the condition that
Q— ﬁ]'(BSO,Q), 1 +— > 2, K;, is a homomorphism of coalgebras. It can be formulated
in terms of the sequence (Kj;) as follows. Suppose the formal variables p;, p;, pj satisfy an
equality

l+pi+p+...=1+pi+p5+...)- (L+p]+p5+...). Then
D Kiprup) =Y Ko p)) - > Ke( -0l

i>0 >0 k>0
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Indeed, recall that the symmetric functions ring A is a Hopf ring with respect to the coproduct
A(@l) = €; X 1 + 1 X 61'.2
Such a sequence (K;) is called a multiplicative Hirzebruch sequence.

10.2.1. Proposition. A multiplicative Hirzebruch sequence (K;) is completely determined by
the characteristic power series Q(x) = 1+ qix + @z + ... € 1 + 2Q[z], where z = py,
and ¢; = K;(1,0,...,0). Moreover, any formal series Q(z) gives rise to a multiplicative
Hirzebruch sequence.

Proof: Recall that the Pontriagin classes correspond to the elementary symmetric poly-
nomials (in “Pontriagin roots” w;), so that 1 +p; +...+p, = (1 +21)--- (1 + z,). Hence

Qz1) -+ Qay) = 1+ K1 (p1) + Ko (p1,p2) +. ..+ Kn(pr, o, pn) + Kpga(pr, -0 0, )+
U

11. JUNE 5TH

11.1. Hirzebruch genera. A ring homomorphism €2, — Q (a character) is called a genus.
Thus any characteristic power series Q(z) = 1 + q1x + @22® + ... € 1 + zQ[x] determines
a Hirzebruch genus oo[M*"] = (IT\_, Q(x:), [M*"]), where (1 + x1) -+ (1 + @) = p(TM*").
Conversely, any genus arises from an appropriate characteristic power series.

The most famous genus is the signature (of the Poincaré pairing on the middle cohomol-

ogy).
11.1.1. Theorem. (F. Hirzebruch, 1954) The signature sign(M) is given by the L-genus

——+...

L(x):izzwzl_i_z z?
tanh(y/z) P (2k)! 3 45

(Bernoulli numbers). The corresponding multiplicative Hirzebruch sequence is

P Tp2 — pi 62ps — 13p1p2 + 2p3
0 ) 1 3 ) 2 45 ) 3 945 )
7 381pa = Tlpipy — 19p3 + 22pips — 3p)
4 14175 o

Proof: 1t suffices to compare the signature and L-genus on generators of 0, ®7 Q. Evi-
dently, sign(CP?*) = 1. On the other hand, p(TCP?%*) = (1+2?)%**1 and L(2%) = 2/ tanh(2);
hence L(p(TCP?*)) = (z/tanh(z))**1. So we have to find the degree 2k term of this

1 J 2k+1
series, that is %%,22;{;1 <tanf1(z)> . The variable change v = tanh(z), so that

2By the way, A is graded selfdual, and an orthonormal base of A is formed by the Schur functions that
correspond to the fundamental classes of Schubert cells. This is the unique integral orthonormal base up to
permutations and sign changes.
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d
dz= 20— (14 u? +u* 4 .. .)du, proves
1—u?
1 dz 1 j{(l+u2+u4+...)du_1 O
2mi [ tanh®*1(z)  2mi w2kt -

11.1.2. Corollary. L[M]is an integer. For example, p;[M4] is divisible by 3, while 7po[M?®] —
p3[M?] is divisible by 45.

11.2. Complex version. There is a parallel story for the (stable) complex cobordism ring
QOF in place of €,, and Chern classes in place of Pontriagin classes. In particular, the Todd
genus

T T . Bopx?k
Td =— =1+ — Sy L eSS
(x) e =t +;( ) e

The corresponding multiplicative Hirzebruch sequence is

¢ e+ 2 c1Co —cy + c103 + 3¢3 + Aty — ¢f
Tdy=1, Tdy = —, Tdy, = Tdys = —=, Tdy =
0 ) 1 9 ) 2 12 ; 3 2 ’ 4 720 )

We have T'd(CP") =1 for any n.

11.3. PL Pontriagin classes. We will study the simplicial complexes that have a structure
of a topological (not necessarily smooth) manifold, and their piecewise linear (PL) morphisms
(that is, linear on simplices after an appropriate subdivision). For example, S¥: the boundary
of the standard k£ + 1-simplex. More generally, any smooth compact manifold has a PL
structure (Whitehead); it is unique up to a PL isomorphism.

11.3.1. Lemma. Let M™ be a compact PL manifold of dimension n, and f: M — S¥ a PL
morphism, n — k = 4i. Then for almost all y € S*, the preimage f~'(y) is a compact
PL manifold of dimension 4i. A choice of orientations of M™ and S* defines the induced
orientation of f~!(y), and the signature sign(f~!(y)) is independent of y for almost all y. [

This common value of sign(f~'(y)) is denoted sign(f). Similarly to Exercises 4,5, we have

11.3.2. Lemma. a) sign(f) depends only on the homotopy class of f in 7%(M");
b) If 8 < n — 1, so that 7%(M™) is a group (as in Exercise 4a), then f — sign(f) is a
homomorphism 7%(M") — Z. O

11.3.3. Theorem. a) If 8i < n — 1, there is a unique cohomology class L;(M") € H*(M" Q)
such that (L;(M™) - f*s, [M"]) = sign(f);
b) If M™ is a PL structure on a smooth manifold M", then L;(M™) = L;,(TM™). O
If the condition 8 < n — 1 is not satisfied, we can consider M"™ x S™ for m > 0, and

define L;(M™) € H*(M", Q) as the pullback of L;(M™ x S™) € H*(M" x S™, Q) for a natural
embedding M™ < M™ x S™. In particular, {L;(M%), [M*]) = sign(M*).
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11.4. Lemma. a) There is a rank 4 oriented vector bundle V over S* such that p; (V) = —2s,
and euy(V) = s, where s is the generator of H*(S*,Z);

b) For any k,m € Z such that kK = 2m (mod 4), there is a rank 4 oriented vector bundle
W over S* such that p;(W) = ks, and eus(W) = ms.

Proof: a) V is the tautological vector bundle over HP! = S%. Then c¢(V) = 1 + euy(V) =
I+s = p(V)=(1—-5)*=1-2s.

b) m(BSO(4)) = m3(SO(4)) = Z ® Z. Given f: S* — BSO(4), p1(f*Ss) and euy(f*Sy)
are linear functionals Z®Z = m,(BSO(4)) — H*(S*,Z) = Z. The values of these functionals
on the classifying map of V are —2, 1. The values of these functionals on the classifying map
of the tangent bundle 7'S* are 0, 2. O

11.5. Example. (Milnor, 1956) For any k£ = 2 (mod 4) let W be a rank 4 oriented vector
bundle over S* with p;(Wy,) = ks, eus(W,) = s. From the Gysin sequence for the sphere bun-

dle S(Wy,) %, % we conclude that S (W},) is homotopic to S7. Actually it is homeomorphic
to S7, and even PL equivalent to S7. It follows that Th(W;) (the one-point compactification
of the open disc bundle) is a PL manifold. But H*(Th(W;),Z) = Z[0] & Z[—4] & Z[-8],
hence sign(Th(Wy)) = 1 (with an appropriate choice of orientation).
The total Pontriagin class of the tangent bundle of the total space of W is
P(TWi) = 7 (p(TS*) - p(Wi)) = " (1 + ks)

up to 2-torsion, where 7 is the projection from the total space of W, to S* Hence
p1(TTh(Wy)) = ku, where u is a generator of H*(Th(Wy),Z). Indeed, passing to the one-
point compactification of Wj, does not affect H*. Hence Py 1)[Th(Wj)] = k* (by Poincaré du-
ality with integral coefficients, u? is a generator of H®(T'h(W;),Z)). By Hirzebruch formula,
1 = sign(Th(Wy)) = & Py [Th(Wi)] — 2 Pa.y [Th(Wy)], hence Py [Th(Wy)] = (45+k?) /7 is
not integral if £ Z +2 (mod 7). Hence the PL manifold Th(W;) admits no smooth structure
if kK # £2 (mod 7) (but £k = 2 (mod 4)). In particular, the smooth manifold S(W) is not
diffeomorphic to ST (though it is PL equivalent to S7): otherwise Th(W}) would be smooth.



