

Course Title (in English)	Geometric Representation Theory
Course Title (in Russian)	Геометрическая теория представлений
Lead Instructor(s)	Braverman, Alexander Finkelberg, Michael
Is this syllabus complete, or do you plan to edit it again before sending it to the Education Office?	The syllabus is a final draft waiting for form approval
Contact Person	Michael Finkelberg
Contact Person's E-mail	fnklberg@gmail.com

1. Annotation

Course Description

Geometric representation theory applies algebraic geometry to the problems of representation theory. Some of the most famous problems of representation theory were solved on this way during the last 40 years. The list includes the Langlands reciprocity for the general linear groups over the functional fields, the Langlands-Shelstad fundamental Lemma, the proof of the Kazhdan-Lusztig conjectures; the computation of the characters of the finite groups of Lie type. We will study

representations of the affine Hecke algebras using the geometry of affine Grassmannians (Satake isomorphism) and Steinberg varieties of triples (Deligne-Langlands conjecture). This is a course for master students knowing the basics of algebraic geometry, sheaf theory, homology and K-theory.

Course Prerequisites / Recommendations

The basic algebraic geometry, sheaf theory, homology and K-theory.

2. Structure and Content

Number of ECTS credits

6

Торіс	Summary of Topic	Lectures (# of hours)	Seminars (# of hours)	Labs (# of hours)
Affine Grassmannians.	Schubert varieties of finite and infinite codimension, semiinfinite orbits.	10	5	
Hyperbolic stalks.	Dimension estimates for the intersection of semiinfinite and G(O)-orbits. Exactness of the hyperbolic stalks.	10	5	
Convolution.	Exactness of convolution. Convolution vs. fusion. Commutativity constraint.	10	5	
Kazhdan- Lusztig- Ginzburg construction.	Demazure operators in the equivariant K-theory of the Steinberg triple variety. Relation of Borel-Moore homology and Ext-algebra for semismall resolutions.	10	5	

3. Assignments

Assignment Type	Assignment Summary
Problem Set	Problems on the intersection cohomology sheaves on affine Grassmannian.
Problem Set	Problems on the nearby and vanishing cycles.
Problem Set	Problems on the Hall algebra and the spherical affine Hecke algebra.

4. Grading

Type of Assessment

Graded

	Activity Type	Activity weight, %
Grade Structure	Homework Assignments	67
	Final Exam	33

Grading Scale

A:	80
B:	70
C:	60
D:	50
E:	40
F:	30
Attendance Requirements	Optional

5. Basic Information

Maximum Number of Students

	Maximum Number of Students
Overall:	10
Per Group (for seminars and labs):	10

Course Stream	Science, Technology and Engineering (STE)
Course Term (in context of Academic Year)	Term 1 Term 2

Students of Which Programs do You Recommend to Consider this Course as an Elective?

Masters Programs	PhD Programs
Mathematical and Theoretical Physics	Mathematics and Mechanics Physics

6. Textbooks and Internet Resources

Required Textbooks	ISBN-13 (or ISBN- 10)
Representation theoryand complex geometry.Chriss N., Ginzburg V., Birkhauser, Boston, 2010.	9780817649371

Recommended Textbooks	ISBN-13 (or ISBN-10)
Macdonald I.G., Symmetric functions and Hall algebras, Clarendon Press, 2015.	9780198739128

7. Facilities

8. Learning Outcomes

	Knowledge
Geometry of the affine Grassmannians.	

Skill

Working knowledge of computations with intersection cohomology sheaves.

Experience

Experience of working with the Hall algebra and spherical affine Hecke algebras.

9. Assessment Criteria

Input or Upload Example(s) of Assigment 1:

Select Assignment 1 Type	Problem Set	
Input Example(s) of Assignment 1 (preferable)	1. Prove that the IC sheaves with complex coefficients of the G(O)-orbit closures in the affine Grassmannian of GL(2) are constant.	
	2. Find the IC stalks with coefficients in the algebraic closure of a finite field of characteristic p of the G(O)-orbit closures in the affine Grassmannian of GL(2).	
	3. Find the IC stalks of the minimal G(O)-orbit closure in the affine Grassmannian of a simple algebraic group G.	
	4. Find the hyperbolic stalks in the problem 3 above.	
	5. Find the usual and hyperbolic stalks of the IC sheaf of the nilpotent cone of a simple Lie algebra g.	
Assessment Criteria for	1. Correct proof: 10 points; incorrect proof: 0 points.	
Assignment 1	2. Correct answer for all p: 10 points; correct answer for p>2: 8 points; correct answer for p=infty: 5 points.	
	3. Correct answer for all G: 10 points; correct answer for classical G: 5 points.	
	4. Correct answer for all G: 10 points; correct answer for classical G: 5 points.	
	5. Correct answer for all g: 10 points; correct answer for classical g: 5 points.	
Input or Upload Example(s) of Assigment 2:		
Input or Upload Example(s) of Assigment 3:		
Input or Upload Example(s) of Assigment 4:		
Input or Upload Example(s) of Assigment 5:		

10. Additional Notes