

Course Title (in English)	Gauge fields and complex geometry
Course Title (in Russian)	Калибровочные поля и комплексная геометрия
Lead Instructor(s)	Rosly, Alexei
Is this syllabus complete, or do you plan to edit it again before sending it to the Education Office?	The syllabus is a final draft waiting for form approval
Contact Person	Alexei Rosly
Contact Person's E-mail	alexei.rosly@gmail.com

1. Annotation

Course Description

- 1. Self-duality equations, Bogomolny equations.
- 2. Relation to holomorphic bundles.
- 3. Relation to holomorphic bundles on twistor space.
- 4. Conformal symmetry and complex geometry in twistor space.
- 5. Elements of superfield formulation of SUSY field theories.
- 6. Chirality type constraints and complex geometry.
- 7. Some examples of superfield theories which require complex geometry.
- 8. BPS conditions in SUSY theories and complex geometry.
- 9. Elements of Hitchin's integrable systems and related complex geometry.

Course Prerequisites / Recommendations Student should be familiar with classical mechanics and classical field theory (Landau-Lifshitz' Vol 1 and 2), calculus, and basic differential geometry.

2. Structure and Content

Course Academic Level	Master-level course suitable for PhD students
Number of ECTS credits	6

Topic	Summary of Topic	Lectures (# of hours)	Seminars (# of hours)	Labs (# of hours)
Gauge Theory	Mathematical aspects of Gauge Theory	1.5 h	0	0

3. Assignments

4. Grading

Type of Assessment	Graded	
	Activity Type	Activity weight, %
Grade Structure	Final Exam	100
	r	·

Grading Scale

A:	86
B:	76

C:	66
D:	56
E:	46
F:	0
Attendance Requirements	Optional

5. Basic Information

Course Stream	Science, Technology and Engineering (STE)
Course Delivery Frequency	Every year

Students of Which Programs do You Recommend to Consider this Course as an Elective?

Masters Programs	PhD Programs
Mathematical and Theoretical Physics	

Course Tags

Math Physics

6. Textbooks and Internet Resources

Required Textbooks	ISBN-13 (or ISBN-10)
The Classical Theory of Fields. Vol. 2 (4th ed.). Landau LD, Lifshitz EM. Butterworth- Heinemann, 1975.	9780750627689

Recommended Textbooks	ISBN-13 (or ISBN-10)
Superstring Theory. Vol. 2: Loop amplitudes, anomalies and phenomenology. Green, M. B.; Schwarz, J. H.; Witten, E., Cambridge University Press 1987. XII, 596 pp.	9780521329996
String Theory and M-Theory: A Modern Introduction. Becker K, Becker M, Schwarz JH. Cambridge University Press, 2006.	9780521860697
Geometry, Topology and Physics, 2nd Edition. Nakahara M. CRC Press. 2003.	9780750306065
Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces. Hitchin NJ, Segal GB, Ward RS. Oxford University Press, 1999.	9780199676774
Geometry of Yang-Mills fields. Atiyah M. Edizioni della Normale, 2013	9788876423031
Атья М. Геометрия и физика узлов. Мир, 1995.	5-03-002892-7
Грин М., Шварц Дж., Виттен Э. Теория суперструн, том 2. Мир, 1990.	5-03-001567-1

7. Facilities

8. Learning Outcomes

Knowledge

Basic constructions and theorems in complex geometry which are widely used in modern field theory.

Skill

Understanding of mathematical terminology encountered in modern theoretical physics papers. Some know-how in exploiting complex geometry in field theory.

Experience

Solving problems in classical field theory which are most characteristic and basic for modern theoretical physics.

9. Assessment Criteria

Input or Upload Example(s) of Assigment 1:		
Select Assignment 1 Type	Final Exam	
Or Upload Example(s) of Assignment 1	https://ucarecdn.com/a0ef7a9e-e91a-4979-973e-b1c65b23d566/	
Assessment Criteria for Assignment 1	Solving problems on day of exam. Activity during the semester.	
Input or Upload Example(s) of Assigment 2:		
Input or Upload Example(s) of Assigment 3:		
Input or Upload Example(s) of Assigment 4:		
Input or Upload Example(s) of Assigment 5:		
10. Additional Notes		
Free Style Comments (if any)	Examples of problems given above come from the last year. Their topics not always coincide with the present year's course. Nevertheless, students are encouraged to solve them also and this will count for the final assessment. New problems will appear in the lectures. Presenting	

solutions during the semester is particularly welcomed.