Лекция 2. Случайные ходы и лотереи

Макар Гриднев

Национальный исследовательский университет «Высшая школа экономики»

28 сентября 2020

Структура доклада

- ▶ Случайные ходы
- Пример
- ▶ Понятие лотереи
- ▶ Операции с лотереями

Случайные ходы

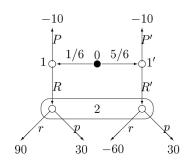
Еще один элемент неопределенности игроков относительно позиции, в которой они находятся - случай. Самый очевидный пример - карточные игры.

Заметим, что эта неопределенность носит вероятностный характер. Это можно также представить следующим образом: в игру добавляется фиктивный игрок - природа.

Пример: упрощенный покер

Первый игрок получает карту, благоприятную для него в 1/6 случаев. Далее, он может либо повысить ставку (R), либо спасовать (P). В первом случае, не зная карты первого, второй игрок может либо сравнять ставку (r), либо спасовать (p).

Вопрос: как по такой игре образовать нормальную форму? Со стратегиями все понятно, но вот выигрыш зависит уже от вероятности.



Понятие лотереи

Вообще говоря, исход в таких играх - не число, а выигрыш, зависящий от случая. Такие исходы формализуются понятием лотереи, либо случайного исхода.

Пусть X - множество "чистых"исходов (для простоты возьмем конечное);

 $\pi:X o [0,1]$, причем $\sum_{x\in X}\pi(x)=1$; Тогда **лотерея** - это формальная комбинация вида $\sum_{x\in X}\pi(x)\otimes x$.

 π - вероятностная мера на X. Носителем лотереи (меры) называется подмножество $supp(\pi) = \{x \in X, \pi(x) \neq 0\}$. Чаще всего лотереи изображают либо схемами, либо таблицами:

получить 100 руб.	попасть в тюрьму на 10 лет	побьют	
0.3	0.5	0.2	ı

Операции с лотереями

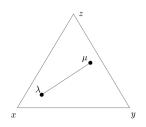
Обозначим за $\Delta(X)$ - множество всех лотерей на множестве X. $\Delta(X)$ является выпуклым множеством:

$$\forall \mu, \lambda \in \Delta(X), \forall \alpha \in [0,1]: \alpha\lambda + (1-\alpha)\mu \in \Delta(X).$$

По определению:

$$\alpha\lambda + (1-\alpha)\mu = \sum_{x \in X} (\alpha\lambda(x) + (1-\alpha)\mu(x)) \otimes x.$$

Заметим, что $X \in \Delta(X)$, так как любому $x \in X$ можно сопоставить лотерею $1 \otimes x$. Таким образом, X можно представлять как множество вершин, а $\Delta(X)$ - как симплекс, натянутый на них.



Операции с лотереями

Операция Δ функториальная: если задано отображение $f: X \to Y$, то оно продолжается до отображения $\Delta(f) = f: \Delta(X) \times \Delta(Y)$

$$\Delta(f) = f_* : \Delta(X) \to \Delta(Y).$$

Если μ - лотерея (мера) на X, то лотерея $f_*(\mu)$ устроена следующим образом:

$$f_*(\mu)(y) = \sum_{f(x)=y} \mu(x), y \in Y.$$

В экономической терминологии мера $f_*(\mu)$ называется маргинальной.

Операции с лотереями

Взглянем на это иначе. Пусть f - отображение X в выпуклое множество C. Тогда f "по линейности"продолжается до отображения $\hat{f}:\Delta(X)\to C$. Обычно в качестве C берется некоторое векторное пространство, чаще всего - \mathbb{R} . Тогда f называется случайной величиной, а \hat{f} - ее средним значением.

Точнее, для меры μ : $\hat{f}(\mu) = \int_X f d\mu = E_{\mu}(f)$.

Проинтегрировав $\mathbf{1}_A$, можно получить меру для подмножества $A\subset X$.

Произведение мер: если есть два множества X и Y с мерами μ и λ соответственно, то мера $\mu\otimes\lambda$ на $x\times Y$ строится следующим образом: $(\mu\otimes\lambda)(x,y)=\mu(x)\lambda(y).$

Байесова интерпретация

X - состояния природы; $f:X\to M$ - прибор.

Теперь на X имеется заданное распределение вероятности $\mu \in \Delta(X)$. Тогда из функториальности Δ получаем распределение наблюдений $f_*(\mu) \in \Delta(M)$.

Теперь, каждый сигнал m позволяет пересчитать вероятностное распределение, образовав новую меру μ_m :

$$\mu_m(x) = 0, f(x) \neq m;$$

 $\mu_m(x) = \mu(x)/mu(f^{-1}(m)), f(x) = m$

Получили условную вероятность и меру μ_m на $X_m = f^{-1}(m)$.

Обратно, зная условные вероятности $\mu_m(m\in M)$ и маргинальную меру $f_*(\mu)$, можно восстановить исходную меру μ :

$$\mu = \int_{M} \mu_{m} d(f_{*}(\mu)(m))$$

Спасибо за внимание!