Markov chains

A. Dymov
Steklov Mathematical Institute \& HSE

23 октября 2020 г.

Lecture 7. Stationary measures

Terminology. Markov chain $=$ Mc; Transition probability matrix (матрица переходных вероятностей)=Tpm
Definition. Distribution (распределение) $\pi=\left(\pi_{1}, \ldots, \pi_{L}\right)$ is called stationary for a Mc with $\mathrm{Tpm} \Pi$ if $\pi \Pi=\pi$.
That is, π is a left eigenvector of Π with eigenvalue 1 .
Terminology: Stationary distribution $=$ stationary measure $=$ stationary state.
Remark. We will often consider different Markov chains with the same Tpm (so, these Markov chains will differ only in their initial distribution $p^{(0)}$). Abusing notation, we will often denote them by the same symbols (e.g. as ξ_{0}, \ldots, ξ_{T}). This is convenient since "key information"about a Mc is contained in the Tpm (so, in the graph if the Mc) while initial conditions can be chosen in many different ways (think about the random walk or the Galton-Watson birth-death process).

Lecture 7. Examples of stationary measure

Lecture 7. Space of probability distributions

Let \mathcal{P} denote a space of (probability) distributions, i.e.

$$
\mathcal{P}=\left\{p=\left(p_{1}, \ldots, p_{L}\right): \sum_{i=1}^{L} p_{i}=1, \quad p_{i} \geq 0 \forall i\right\}
$$

Then $\mathcal{P} \subset \mathbb{R}^{L}$ is a simplex. In particular, \mathcal{P} is a convex compact set in \mathbb{R}^{L}.
For any vector $v=\left(v_{1}, \ldots, v_{L}\right)$ we denote

$$
|v|_{1}:=\sum_{i=1}^{L}\left|v_{j}\right| \quad-\text { the } I^{1} \text {-norm of } v .
$$

Exercise. Check that $\left(\mathcal{P},|\cdot|_{1}\right)$ is a complete metric space, where $|\cdot|_{1}$ denotes a metric on \mathcal{P} generated by the I^{1}-norm.

Lecture 7. Existence of a stationary measure

Theorem 17. Any homogeneous Markov chain (with finite number of states) has a stationary measure.
Corollary 18. Any stochastic matrix has a non-negative left eigenvector corresponding to eigenvalue 1 .

Proof 1 of the theorem: short but specific for our simple case. Brouwer fixed point theorem: a continuous mapping of a convex compact set to itself has a fixed point.

Lecture 7. Bogoliubov-Krylov method

Proof 2 (Bogoliubov-Krylov method): more complicated but VERY general.
Let $p^{(0)} \in \mathcal{P}$ be an arbitrary initial distribution. Then $p^{(i)}=p^{(0)} \Pi^{i}$. Denote

$$
\pi^{k}=\frac{1}{k} \sum_{i=0}^{k-1} p^{(i)} \in \mathcal{P} .
$$

Since the sequence π^{k} is bounded in \mathbb{R}^{L}, it has a convergent subsequence $\pi^{k_{j}}$. Let

$$
\pi=\lim _{j \rightarrow \infty} \pi^{k_{j}}
$$

Since ($\mathcal{P},|\cdot|_{1}$) is complete, $\pi \in \mathcal{P}$.
Let us show that π is a stationary measure. Indeed,

$$
\begin{aligned}
\pi \Pi & =\left(\lim _{j \rightarrow \infty} \pi^{k_{j}}\right) \Pi=\lim _{j \rightarrow \infty}\left(\pi^{k_{j}} \Pi\right)=\lim _{j \rightarrow \infty} \frac{1}{k_{j}} \sum_{i=0}^{k_{j}-1} p^{(i+1)}=\lim _{j \rightarrow \infty} \frac{1}{k_{j}} \sum_{i=1}^{k_{j}} p^{(i)} \\
& =\lim _{j \rightarrow \infty} \frac{1}{k_{j}}\left(-p^{(0)}+p^{k_{j}}+\sum_{i=0}^{k_{j}-1} p^{(i)}\right)=\lim _{j \rightarrow \infty} \pi^{k_{j}}=\pi
\end{aligned}
$$

Lecture 7. Ergodic matrices

Definition. A stochastic matrix A is called ergodic if there exists $s \in \mathbb{N}$ such that all elements of the matrix A^{s} are strictly positive.
Lemma 19. A Tpm Π of a $M c$ is ergodic if and only if there is $s \in \mathbb{N}$ such that the transition probabilities in s steps $p_{i j}^{(s)}>0$ for any i, j. Proof. Accordingly to Lemma 11(?), the transition probabilities $p_{i j}^{(s)}$ are elements of the matrix Π^{s}.

Remark 20. The property of a $\mathrm{Tpm} \Pi=\left(p_{i j}\right)$ to be ergodic is NOT related to the explicit values $p_{i j}$ but is related only to the structure of the graph of the corresponding Mc. That is, with positions of positive elements in Π.

Lecture 7. Ergodic theorem (main result of the course, achtung!)

Theorem 21. (Ergodic Theorem) Assume that a homogeneous Markov chain (with finite number of states) has ergodic Tpm П. Then it has a unique stationary measure π and there are constants $C>0$ and $0<\lambda<1$ such that for any initial distribution $p^{(0)}$ we have

$$
\left|p^{(n)}-\pi\right|_{1} \leq C \lambda^{n} \quad \text { for any } n \geq 1
$$

Moreover, $\pi_{j}>0$ for every $1 \leq j \leq L$.
In particular, for any initial distribution $p^{(0)}$ we have $p^{(n)} \rightarrow \pi$ as $n \rightarrow \infty$.
\Rightarrow Markov chain "forgets" initial conditions
\Rightarrow Exponential convergence to equilibrium
Corollary 22. Transition probability in n steps $p_{i j}^{(n)}$ satisfy $p_{i j}^{(n)} \rightarrow \pi_{j}$ as $n \rightarrow \infty$. This convergence is exponential, that is $\left|p_{i j}^{(n)}-\pi_{j}\right| \leq C \lambda^{n}$ for any i, j, n and some $C>0,0<\lambda<1$.
Proof. Let $p^{(0)}=(0, \ldots, 0,1,0, \ldots, 0)$. Then
$p^{(n)}=p^{(0)} \Pi^{n}=\left(p_{i 1}^{(n)}, \ldots, p_{i L}^{(n)}\right) \rightarrow \pi$.

Letcure 7. Proof of the ergodic theorem. Preliminaries

Notation: For a vector $v \in \mathbb{R}^{L}$ we denote $\sum_{+} v_{j}:=\sum_{j: v_{j}>0} v_{j}$.
Lemma 23. Let $p, q \in \mathcal{P}$. Then $|p-q|_{1}=2 \sum_{+}\left(p_{j}-q_{j}\right)$.
Proof. Since $\sum_{j=1}^{L}\left(p_{j}-q_{j}\right)=1-1=0$, we have
$\sum_{+}\left(p_{j}-q_{j}\right)=-\sum_{-}\left(p_{j}-q_{j}\right)$. Consequently,

$$
|p-q|_{1}=\left(\sum_{+}-\sum_{-}\right)\left(p_{j}-q_{j}\right)=2 \sum_{+}\left(p_{j}-q_{j}\right) .
$$

Proof of the ergodic theorem:
The main idea is to show that the mapping Π^{s} is a contraction on ($\mathcal{P},|\cdot|{ }_{1}$).

