Markov chains

A. Dymov

Steklov Mathematical Institute & HSE

23 октября 2020 г.

Terminology. Markov chain = Mc; Transition probability matrix (матрица переходных вероятностей)=Tpm

Definition. Distribution (распределение) $\pi = (\pi_1, \ldots, \pi_L)$ is called *stationary* for a Mc with Tpm П if $\pi \Pi = \pi$.

That is, π is a left eigenvector of Π with eigenvalue 1.

Terminology: Stationary distribution = stationary measure = stationary state.

Remark. We will often consider different Markov chains with the same Tpm (so, these Markov chains will differ only in their initial distribution $p^{(0)}$). Abusing notation, we will often denote them by the same symbols (e.g. as ξ_0, \ldots, ξ_T). This is convenient since "key information" about a Mc is contained in the Tpm (so, in the graph if the Mc) while initial conditions can be chosen in many different ways (think about the random walk or the Galton-Watson birth-death process).

Lecture 7. Examples of stationary measure

(ロ)、(型)、(E)、(E)、 E) のQ(C)

Let \mathcal{P} denote a space of (probability) distributions, i.e.

$$\mathcal{P} = \{ \boldsymbol{p} = (\boldsymbol{p}_1, \dots, \boldsymbol{p}_L) : \sum_{i=1}^L \boldsymbol{p}_i = 1, \quad \boldsymbol{p}_i \geq 0 \, \forall i \}.$$

Then $\mathcal{P} \subset \mathbb{R}^{L}$ is a simplex. In particular, \mathcal{P} is a convex compact set in \mathbb{R}^{L} . For any vector $v = (v_1, \dots, v_L)$ we denote

$$|v|_1 := \sum_{i=1}^L |v_i|$$
 — the l^1 -norm of v .

Exercise. Check that $(\mathcal{P}, |\cdot|_1)$ is a complete metric space, where $|\cdot|_1$ denotes a metric on \mathcal{P} generated by the l^1 -norm.

Theorem 17. Any homogeneous Markov chain (with finite number of states) has a stationary measure.

Corollary 18. Any stochastic matrix has a non-negative left eigenvector corresponding to eigenvalue 1.

Proof 1 of the theorem: short but specific for our simple case. Brouwer fixed point theorem: a continuous mapping of a convex compact set to itself has a fixed point.

Lecture 7. Bogoliubov-Krylov method

Proof 2 (Bogoliubov-Krylov method): more complicated but VERY general.

Let $p^{(0)} \in \mathcal{P}$ be an arbitrary initial distribution. Then $p^{(i)} = p^{(0)} \Pi^i$. Denote

$$\pi^k = rac{1}{k}\sum_{i=0}^{k-1} p^{(i)} \in \mathcal{P}.$$

Since the sequence π^k is bounded in $\mathbb{R}^L,$ it has a convergent subsequence $\pi^{k_j}.$ Let

$$\pi = \lim_{j \to \infty} \pi^{k_j}.$$

Since $(\mathcal{P}, |\cdot|_1)$ is complete, $\pi \in \mathcal{P}.$

Let us show that π is a stationary measure. Indeed,

$$\pi \Pi = (\lim_{j \to \infty} \pi^{k_j}) \Pi = \lim_{j \to \infty} (\pi^{k_j} \Pi) = \lim_{j \to \infty} \frac{1}{k_j} \sum_{i=0}^{k_j-1} p^{(i+1)} = \lim_{j \to \infty} \frac{1}{k_j} \sum_{i=1}^{k_j} p^{(i)}$$
$$= \lim_{j \to \infty} \frac{1}{k_j} \left(-p^{(0)} + p^{k_j} + \sum_{i=0}^{k_j-1} p^{(i)} \right) = \lim_{j \to \infty} \pi^{k_j} = \pi.$$

Definition. A stochastic matrix A is called *ergodic* if there exists $s \in \mathbb{N}$ such that all elements of the matrix A^s are strictly positive.

Lemma 19. A Tpm Π of a Mc is ergodic if and only if there is $s \in \mathbb{N}$ such that the transition probabilities in s steps $p_{ii}^{(s)} > 0$ for any i, j.

Proof. Accordingly to Lemma 11(?), the transition probabilities $p_{ij}^{(s)}$ are elements of the matrix Π^s .

Remark 20. The property of a Tpm $\Pi = (p_{ij})$ to be ergodic is NOT related to the explicit values p_{ij} but is related only to the structure of the graph of the corresponding Mc. That is, with positions of positive elements in Π .

Lecture 7. Ergodic theorem (main result of the course, achtung!)

Theorem 21. (Ergodic Theorem) Assume that a homogeneous Markov chain (with finite number of states) has ergodic Tpm Π . Then it has a **unique** stationary measure π and there are constants C > 0 and $0 < \lambda < 1$ such that for any initial distribution $p^{(0)}$ we have

$$|p^{(n)} - \pi|_1 \leq C\lambda^n$$
 for any $n \geq 1$.

Moreover, $\pi_j > 0$ for every $1 \le j \le L$.

In particular, for any initial distribution $p^{(0)}$ we have $p^{(n)} \to \pi$ as $n \to \infty$.

- \Rightarrow Markov chain "forgets" initial conditions
- \Rightarrow Exponential convergence to equilibrium

Corollary 22. Transition probability in n steps $p_{ij}^{(n)}$ satisfy $p_{ij}^{(n)} \rightarrow \pi_j$ as $n \rightarrow \infty$. This convergence is exponential, that is $|p_{ij}^{(n)} - \pi_j| \leq C\lambda^n$ for any i, j, n and some $C > 0, 0 < \lambda < 1$. Proof. Let $p^{(0)} = (0, \dots, 0, 1, 0, \dots, 0)$. Then $p^{(n)} = p^{(0)}\Pi^n = (p_{i1}^{(n)}, \dots, p_{iL}^{(n)}) \rightarrow \pi$.

Letcure 7. Proof of the ergodic theorem. Preliminaries

Notation: For a vector $v \in \mathbb{R}^{L}$ we denote $\sum_{+} v_{j} := \sum_{j: v_{j} > 0} v_{j}$. **Lemma 23.** Let $p, q \in \mathcal{P}$. Then $|p - q|_{1} = 2 \sum_{+} (p_{j} - q_{j})$. *Proof.* Since $\sum_{j=1}^{L} (p_{j} - q_{j}) = 1 - 1 = 0$, we have $\sum_{+} (p_{j} - q_{j}) = -\sum_{-} (p_{j} - q_{j})$. Consequently,

$$|p-q|_1 = (\sum_{+} - \sum_{-})(p_j - q_j) = 2\sum_{+} (p_j - q_j).$$

Proof of the ergodic theorem:

The main idea is to show that the mapping Π^s is a contraction on $(\mathcal{P},|\cdot|_1).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで