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Lecture 7. Stationary measures

Terminology. Markov chain = Mc; Transition probability matrix
(ìàòðèöà ïåðåõîäíûõ âåðîÿòíîñòåé)=Tpm

De�nition. Distribution (ðàñïðåäåëåíèå) π = (π1, . . . , πL) is called
stationary for a Mc with Tpm Π if πΠ = π.
That is, π is a left eigenvector of Π with eigenvalue 1.

Terminology: Stationary distribution = stationary measure = stationary
state.

Remark. We will often consider di�erent Markov chains with the same
Tpm (so, these Markov chains will di�er only in their initial distribution
p(0)). Abusing notation, we will often denote them by the same symbols
(e.g. as ξ0, . . . , ξT ). This is convenient since "key information"about a
Mc is contained in the Tpm (so, in the graph if the Mc) while initial
conditions can be chosen in many di�erent ways (think about the random
walk or the Galton-Watson birth-death process).



Lecture 7. Examples of stationary measure



Lecture 7. Space of probability distributions

Let P denote a space of (probability) distributions, i.e.

P = {p = (p1, . . . , pL) :
L∑

i=1

pi = 1, pi ≥ 0 ∀i}.

Then P ⊂ RL is a simplex. In particular, P is a convex compact set in RL.

For any vector v = (v1, . . . , vL) we denote

|v |1 :=
L∑

i=1

|vj | � the l1-norm of v .

Exercise. Check that (P, | · |1) is a complete metric space, where | · |1
denotes a metric on P generated by the l1-norm.



Lecture 7. Existence of a stationary measure

Theorem 17. Any homogeneous Markov chain (with �nite number of
states) has a stationary measure.

Corollary 18. Any stochastic matrix has a non-negative left eigenvector
corresponding to eigenvalue 1.

Proof 1 of the theorem: short but speci�c for our simple case.
Brouwer �xed point theorem: a continuous mapping of a convex compact
set to itself has a �xed point.



Lecture 7. Bogoliubov-Krylov method

Proof 2 (Bogoliubov-Krylov method): more complicated but VERY
general.
Let p(0) ∈ P be an arbitrary initial distribution. Then p(i) = p(0)Πi .
Denote

πk =
1

k

k−1∑
i=0

p(i) ∈ P.

Since the sequence πk is bounded in RL, it has a convergent subsequence
πkj . Let

π = lim
j→∞

πkj .

Since (P, | · |1) is complete, π ∈ P.
Let us show that π is a stationary measure. Indeed,

πΠ = ( lim
j→∞

πkj )Π = lim
j→∞

(πkj Π) = lim
j→∞

1

kj

kj−1∑
i=0

p(i+1) = lim
j→∞

1

kj

kj∑
i=1

p(i)

= lim
j→∞

1

kj

(
− p(0) + pkj +

kj−1∑
i=0

p(i)
)

= lim
j→∞

πkj = π.



Lecture 7. Ergodic matrices

De�nition. A stochastic matrix A is called ergodic if there exists s ∈ N
such that all elements of the matrix As are strictly positive.

Lemma 19. A Tpm Π of a Mc is ergodic if and only if there is s ∈ N
such that the transition probabilities in s steps p

(s)
ij > 0 for any i , j .

Proof. Accordingly to Lemma 11(?), the transition probabilities p
(s)
ij are

elements of the matrix Πs .

Remark 20. The property of a Tpm Π = (pij) to be ergodic is NOT
related to the explicit values pij but is related only to the structure of the
graph of the corresponding Mc. That is, with positions of positive
elements in Π.



Lecture 7. Ergodic theorem (main result of the course,
achtung!)

Theorem 21. (Ergodic Theorem) Assume that a homogeneous Markov
chain (with �nite number of states) has ergodic Tpm Π. Then it has a
unique stationary measure π and there are constants C > 0 and
0 < λ < 1 such that for any initial distribution p(0) we have

|p(n) − π|1 ≤ Cλn for any n ≥ 1.

Moreover, πj > 0 for every 1 ≤ j ≤ L.

In particular, for any initial distribution p(0) we have p(n) → π as n→∞.

⇒ Markov chain "forgets" initial conditions

⇒ Exponential convergence to equilibrium

Corollary 22. Transition probability in n steps p
(n)
ij satisfy p

(n)
ij → πj as

n→∞. This convergence is exponential, that is |p(n)ij − πj | ≤ Cλn for
any i , j , n and some C > 0, 0 < λ < 1.

Proof. Let p(0) = (0, . . . , 0, 1, 0, . . . , 0). Then

p(n) = p(0)Πn = (p
(n)
i1 , . . . , p

(n)
iL )→ π.



Letcure 7. Proof of the ergodic theorem. Preliminaries

Notation: For a vector v ∈ RL we denote
∑

+ vj :=
∑

j : vj>0 vj .

Lemma 23. Let p, q ∈ P. Then |p − q|1 = 2
∑

+(pj − qj).

Proof. Since
∑L

j=1(pj − qj) = 1− 1 = 0, we have∑
+(pj − qj) = −

∑
−(pj − qj). Consequently,

|p − q|1 = (
∑
+

−
∑
−

)(pj − qj) = 2
∑
+

(pj − qj).

Proof of the ergodic theorem:

The main idea is to show that the mapping Πs is a contraction on
(P, | · |1).




