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1. Introduction

Sperner’s lemma [22] is a combinatorial analog of the Brouwer fixed point the-
orem, which is equivalent to it. This lemma and its extension for covers, the
Knaster–Kuratowski– Mazurkiewicz (KKM) theorem [9], have many applica-
tions in combinatorics, algorithms, game theory and mathematical economics.

There are many extensions of the KKM theorem. In this paper we con-
sider two of them: Gale’s lemma [6] and Shapley’s KKMS theorem [17].

David Gale in [6] proved an existence theorem for an exchange equilib-
rium in an economy with indivisible goods and only one perfectly divisible
good, which can be thought of as money. The main lemma for this theorem
is [6, Lemma, p. 63].

Gale’s lemma can be considered as a colored KKM theorem. In [6, p.
63], Gale wrote about his lemma: “A colloquial statement of this result is the
red, white and blue lemma which asserts that if each of three people paint a
triangle red, white and blue according to the KKM rules, then there will be
a point which is in the red set of one person, the white set of another, the
blue of the third.” Note that Bapat [3] found an analog of Gale’s lemma for
Sperner’s lemma.

In fact, Gale’s lemma (or its discrete analogs) can be applied for fair
division problems, namely for the envy-free cake-cutting and rental harmony
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problems . In the envy-free cake-cutting problem, a “cake” (a heterogeneous
divisible resource) has to be divided among n partners with different prefer-
ences over parts of the cake [5,19–21]. The cake has to be divided into n pieces
such that: (a) each partner receives a single connected piece, and (b) each
partner believes that his/her piece is (weakly) better than all other pieces.
An algorithm for solving this problem was developed by Forest Simmons in
1980, in a correspondence with Michael Starbird. It was first publicized by
Francis Su in 1999 [21].

Suppose a group of friends consider renting a house but they shall first
agree on how to allocate its rooms and share the rent. They will rent the
house only if they can find a room assignment-rent division which appeals to
each of them. Following Su [21], we call such a situation rental harmony. In
[1] consideration is given to different aspects of this model.

In 1967 Scarf [16] proved that any non-transferable utility game whose
characteristic function is balanced, has a non-empty core. His proof is based
on an algorithm which approximates fixed points. Lloyd Shapley [17] replaced
the Scarf algorithm by a covering theorem (the KKMS theorem) being a
generalization of the KKM theorem. Now Shapley’s KKMS theorem [7,8,
17,18] is an important tool in the general equilibrium theory of economic
analysis.

The main goal of this paper to considere generalizations of Gale’s and
Shapley’s KKMS theorems with general boundary conditions. In our paper
[15] with any cover of a space T we associate certain homotopy classes of maps
from T to n-spheres. These homotopy invariants can then be considered as
obstructions for extending covers of a subspace A ⊂ X to a cover of all of X.
We are using these obstructions to obtain generalizations of the KKM and
Sperner lemmas. In particular, we show that in the case when A is a k-sphere
and X is a (k+1)-disk there exist KKM type lemmas for covers by n+2 sets
if and only if the homotopy group πk(Sn) �= 0. In Sect. 2 is given a review of
main results of [15].

In Sect. 3 we generalize Gale’s lemma. In particular, see Corollary 3.1,
we pove that if each of n people paint a k-simplex with n colors such that the
union of these covers is not null-homotopic on the boundary, then there will
be a point which is in the first color set of one person, the second color set of
another, and so on.

In Sect. 4 we consider KKMS type theorems. Actually, these theorems
are analogs for covers of a polytopal type Sperner’s lemmas, see [4,13,15]. Let
V be a set of m points in R

n. Then, see Corollary 4.1, if F = {F1, . . . , Fm}
is a cover of a k-simplex that is not null-homotopic on the boundary, then
there is a balanced with respect to V subset B in {1, . . . , m} such that all the
Fi, for i ∈ B, have a common point.

If V is the set of vertices of a k-simplex Δk, then this corollary implies
the KKM theorem and if V is the set of all centers of Δk it yields the KKMS
theorem. As an example, we consider a generalization of Tucker’s lemma
(Corollary 4.3). (Note that David Gale, Lloyd Shapley as well as John F.
Nash were Ph.D. students of Albert W. Tucker in Princeton.)
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Notations. Throughout this paper we consider only normal topological
spaces, all simplicial complexes be finite, all manifolds be compact and piece-
wise linear, In denotes the set {1, . . . , n}, Δn denotes the n-dimensional sim-
plex, Sn denotes the n-dimensional unit sphere, Bn denotes the n-dimensional
unit disk and |K| denotes the underlying space of a simplicial complex K.
We shall denote the set of homotopy classes of continuous maps from X to
Y as [X,Y ].

2. Sperner–KKM lemma with boundary conditions

The (n − 1)-dimensional unit simplex Δn−1 is defined by

Δn−1 := {x ∈ R
n |xi ≥ 0, x1 + · · · + xn = 1}.

Let vi := (x1, . . . , xn) with xi = 1 and xj = 0 for j �= i. Then v1, . . . , vn is
the set of vertices of Δn−1 in R

n.
Let K be a simplicial complex. Denote by Vert(K) the vertex set of K.

An n-labeling L is a map L : Vert(K) → {1, 2, . . . , n}. Setting

fL(u) := vk, where u ∈ Vert(K) and k = L(u),

we have a map fL : Vert(K) → R
n. Every point p ∈ |K| belongs to the

interior of exactly one simplex in K. Letting σ = conv{u0, u1, . . . , uk} be the
simplex, we have p =

∑k
0 λi(p)ui with

∑k
0 λi(p) = 1 and all λi > 0. (Actually,

λi(p) are the barycentric coordinates of p). Then fL can be extended to a
continuous (piecewise linear) map fL : |K| → Δn−1 ⊂ R

n defined by

fL(p) =
k∑

i=0

λi(p)fL(ui).

We say that a simplex s in K is fully labeled if s is labeled with a complete
set of labels {1, 2, . . . , n}. Suppose there are no fully labeled simplices in K.
Then fL(p) lies in the boundary of Δn−1. Since the boundary ∂Δn−1 is
homeomorphic to the sphere S

n−2, we have a continuous map fL : |K| →
S

n−2. Denote the homotopy class [fL] ∈ [|K|,Sn−2] by μ(L) = μ(L,K).

Example 2.1. Let L : Vert(K) → {1, 2, 3} be a labelling of a closed planar
polygonal line K with vertices p1p2 · · · pk. Then fL is map from |K| = S

1 to
S

1. Not that μ(L) ∈ [S1,S1] = Z is the degree of the map fL. Moreover,

μ(L) = deg(fL) := p∗ − n∗,

where p∗ (respectively, n∗) is the number of (ordering) pairs (pi, pi+1) such
that L(pi) = 1 and L(pi+1) = 2 (respectively, L(pi) = 2 and L(pi+1) = 1). It
is clear, that instead of [1, 2] we can take [2, 3] or [3, 1].

For instance, let L = (1221231232112231231). Then p∗ = 5 and n∗ = 2.
Thus,

μ(L) = 5 − 2 = 3.
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Example 2.2. Let K be a triangulation of the boundary of a simplex Δk+1.
In other words, K is a triangulation of of Sk). Let L : Vert(K) → {1, . . . , n}
be a labeling such that K has no simplices with n distinct labels. Then
fL ∈ πk(Sn−2).

In the case k = n − 2 we have πk(Sk) = Z and

[fL] = deg(fL) ∈ Z.

(Here by deg(f) is denoted the degree of a continuous map f from S
k to

itself.)
For instance, let L be a Sperner labeling of a triangulation K of ∂Δn−1 =

u1 · · · un. The rules of this labeling are:
(i) The vertices of Δn−1 are colored with different colors, i.e. L(ui) = i for

1 ≤ i ≤ n.
(ii) Vertices of K located on any m-dimensional subface of the large simplex

ui0ui1 · · · uim
are colored only with the colors i0, i1, . . . , im.

Then μ(L) = deg(fL) = 1 in [Sn−2,Sn−2] = Z.

In [15] we proved the following theorem, see [15, Corollary 3.1].

Theorem 2.1. Let T be a triangulation of a simplex Δk+1. Let L : Vert(T ) →
{1, . . . , n} be a labeling such that T has no simplices on the boundary with n
distinct labels. If μ(L, ∂T ) �= 0, then T must contain a fully labeled simplex.

(Here by μ(L, ∂T ) we denote the invariant μ on the boundary of T .)

Since for a Sperner labeling μ(L, ∂T ) = 1 �= 0, Theorem 2.1 implies:
(Sperner’s lemma [22]) Every Sperner labeling of a triangulation of Δn−1

contains a cell labeled with a complete set of labels: {1, 2, . . . , n}.
Consider an oriented manifold M of dimension (n − 1) with boundary.

Then [∂M,Sn−2] = Z and for any continuous f : ∂M → S
n−2 we have [f ] =

deg f . If T is a triangulation of M and L : Vert(T ) → {1, . . . , n} is a labeling
then we denote by deg(L, ∂T ) the class μ(L, ∂T ).

Theorem 2.2 [15, Theorem 3.4]. Let T be a triangulation of an oriented man-
ifold M of dimension (n−1) with boundary. Then for a labeling L : Vert(T ) →
{1, . . . , n} the triangulation must contain at least |deg(L, ∂T )| fully labelled
simplices.

In Fig. 1 is shown an illustration of Theorem 2.2. We have a labeling
with deg(L, ∂T ) = 3. Therefore, the theorem garantee that there are at least
three fully labeled triangles.

Actually, a labeling can be considered as a particular case of a covering.
For any labeling L there is a natural open cover of |K|. The open star of
a vertex u ∈ Vert(K) (denoted St(u)) is |S|\|B|, where S is the set of all
simplices in K that contain u, and B is the set of all simplices in S that
contain no u. Let

UL(K) = {U1(K), . . . , Un(K)},

where

U�(K) :=
⋃

u∈W�

St(u), W� := {u ∈ Vert(K) : L(u) = �}.

Author's personal copy
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Figure 1. deg(L, ∂T ) = 3. There are three fully labeled triangles.

It is clear, that K = U1(K)
⋃ · · · ⋃ Un(K), i.e. UL(K) is a cover of K.

Now we extend the definition of μ(L) for covers.
Let U = {U1, . . . , Un} be a collection of open sets whose union contains

a space T . In other words, U is a cover of T . Let Φ = {ϕ1, . . . , ϕn} be a
partition of unity subordinate to U , i.e. Φ is a collection of non-negative
functions on T such that supp(ϕi) ⊂ Ui, i = 1, . . . , n, and for all x ∈ T ,∑n

1 ϕi(x) = 1. Let

fU,Φ(x) :=
n∑

i=1

ϕi(x)vi,

where v1, . . . , vn, as above, are vertices of Δn−1.
Suppose the intersection of all Ui is empty. Then fU,Φ is a continuous

map from T to S
n−2.

In [15, Lemmas 2.1 and 2.2] we proved that a homotopy class [fU,Φ] in
[T,Sn−2] does not depend on Φ. We denote it by μ(U).

Note that for a labeling L : Vert(K) → {1, 2, . . . , n} we have

μ(L) = μ(UL(K)) ∈ [|K|,Sn−2].

Example 2.3. (a) Let T = S
k and U = {U1, . . . , Un} be an open cover of

T = S
k such that the intersection of all Ui is empty. Then μ(U) ∈

πk(Sn−2). In the case k = n − 2 we have

μ(U) = deg(fU ) ∈ Z.

(b) Let h : Sk → S
n−2 be any continuous map. Actually, Sn−2 can be con-

sidered as the boundary of the simplex Δn−1. Let

Ui := h−1(Ui(Δn−1), i = 1, . . . , n U = {U1, . . . , Un}.

Then μ(U) = [h] ∈ πk(Sm−1).

For instance, if h : S3 → S
2 is the Hopf fibration, then μ(U) = 1 ∈

π3(S2) = Z.
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In fact, see [15, Lemma 2.4], the homotopy classes of covers are also well
defined for closed sets.

Definition 2.1. We call a family of sets S = {S1, . . . , Sn} as a cover of a space
T if S is either an open or closed cover of T .

Definition 2.2. Let S = {S1, . . . , Sn} be a cover of a space T . We say that S
is not null-homotopic if the intersection of all Si is empty and μ(S) �= 0 in
[T,Sn−2].

Note that covers in Examples 2.1, 2.2 and 2.3 are not null-homotopic.
Actually, these examples and [15, Theorems 2.1–2.3] imply the following the-
orem.

Theorem 2.3. Let S = {S1, . . . , Sm} be a cover of a space T . Suppose the
intersection of all Si is empty.

1. Let T be S
k. Then S is not null-homotopic if and only if πk(Sn−1) is

not trivial and μ(S) �= 0 in this group.
2. Let T be an oriented (n − 2)-dimensional manifold. Then S is not null-

homotopic if and only if deg(fS) �= 0.

Now we consider a generalization of the KKM theorem for covers of
spaces.

Definition 2.3. Consider a pair (X,A), where A is a subspace of a space X.
Let S = {S1, . . . , Sm} be a cover of X and C = {C1, . . . , Cm} be a cover of
A. We say that S is an extension of C and write C = S|A if Ci = Si ∩ A for
all i.

Definition 2.4. We say that a pair of spaces (X,A), where A ⊂ X, belongs
to EPn and write (X,A) ∈ EPn if there is a continuous map f : A → S

n with
[f ] �= 0 in [A,Sn] that cannot be extended to a continuous map F : X → S

n

with F |A = f .

We denoted this class of pairs by EP after S. Eilenberg and L. S. Pon-
tryagin who initiated obstruction theory in the late 1930s. Note that [15,
Theorem 2.3] yield that

(i) if πk(Sn) �= 0, then (Bk+1,Sk) ∈ EPn,
(ii) if X is an oriented (n + 1)-dimensional manifold and A = ∂X, then

(X,A) ∈ EPn.

Theorem 2.4. Let A be a subspace of a space X. Let (X,A) ∈ EPn−2. Let
S = {S1, . . . , Sn} be a cover of (X,A). Suppose the cover S is not null-
homotopic on A. Then all the Si have a common intersection point.

Corollary 2.1. Let S = {S1, . . . , Sn} be a cover of Bk. Suppose S is not null-
homotopic on the boundary of Bk. Then all the Si have a common intersection
point.

Corollary 2.2. Let S = {S1, . . . , Sn} be a cover of a manifold M of dimension
(n − 1) with boundary. Let C := S|∂M . Suppose deg fC �= 0. Then all the Si

have a common intersection point.
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We say that a cover S := {S1, . . . , Sm} of a simplex Δm−1 is a KKM
cover if for all J ⊂ Im the face of Δm−1 that is spanned by vertices vi for
i ∈ J is covered by Si for i ∈ J .

Let C := S|∂Δn−1 . Note that if all the Ci have no a common intersection
point, then the KKM assumption implies that μ(C) = deg(fC) = 1. Thus,
Corollary 2.2 yields

Corollary 2.3 (KKM theorem [9]). If S := {S1, . . . , Sn} is a KKM cover of
Δn−1, then all the Si have a common intersection point.

3. Gale’s lemma with boundary conditions

David Gale [6, Lemma, p. 63] proved the following lemma:
For i, j = 1, 2, . . . , n let Si

j be closed sets such that for each i,
{Si

1, . . . , S
i
n} is a KKM covering of Δn−1. Then there exists a permutation π

of 1, 2, . . . , n such that
n⋂

i=1

Si
π(i) �= ∅.

Now we generalize this lemma for pairs of spaces.

Theorem 3.1. Let A be a subspace of a space X. Let (X,A) ∈ EPn−2. Let
Si = {Si

1, . . . , S
i
n}, i = 1, . . . , n, be covers of (X,A). Let

Fj :=
n⋃

i=1

Si
j , F := {F1, . . . , Fn}, C := F|A.

Suppose C is not null-homotopic. Then there exists a permutation π of
1, 2, . . . , n such that

n⋂

i=1

Si
π(i) �= ∅.

Proof. Here we use Gale’s proof of his lemma. We consider the case where
the sets Si

j are open. As above the proof of the closed case then follows by a
routine limiting argument. Now for each cover Si consider the corresponding
partition of unity {ϕi

1, . . . , ϕ
i
n}.

Define Φi : X → Δn−1 and Φ: X → Δn−1 by

Φi(p) := (ϕi
1(p), . . . , ϕi

n(p)), Φ(p) :=
Φ1(p) + . . . + Φn(p)

n
,

where Δn−1 = {(x1, . . . , xn) ∈ R
n |xi ≥ 0, i = 1, . . . , n, x1 + · · · + xn = 1}.

Since C is not null-homotopic, Φ is a map from A to ∂Δn−1 ≡ S
n−2 and

Φ(X) = Δn−1. Therefore, there is p ∈ X such that Φ(p) = (1/n, . . . , 1/n),
so nΦ(p) = (1, . . . , 1). Thus, the matrix M := nΦ(p) =

(
ϕi

j(p)
)

is a doubly
stochastic matrix, is a square matrix of nonnegative real numbers, each of
whose rows and columns sums to 1. By Mirsky’s lemma [11] for any dou-
bly stochastic matrix M it is a possible to find a permutation π such that
ϕi

π(i)(p) > 0 for all i, but this means precisely that p ∈ Si
π(i). �
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Remark. This proof is constructive. If p ∈ Φ−1(1/n, . . . , 1/n), then there
is a permutation π with ϕi

π(i)(p) > 0, i.e. the intersection of all the Si
π(i),

i = 1, . . . , n, is not empty.

Theorem 3.1 and [15, Theorem 2.3] imply the following corollaries.

Corollary 3.1. Let Si = {Si
1, . . . , S

i
n}, i = 1, . . . , n, be covers of S

k. Let Fj

is the union of Si
j, i = 1, . . . , n, and F := {F1, . . . , Fn}. Suppose F is not

null-homotopic on the boundary of Sk. Then there exists a permutation π of
1, 2, . . . , n such that

n⋂

i=1

Si
π(i) �= ∅.

Corollary 3.2. Let Si = {Si
1, . . . , S

i
n}, i = 1, . . . , n, be covers of a manifold

M of dimension (n−1) with boundary. Let Fj is the union of Si
j, i = 1, . . . , n,

F := {F1, . . . , Fn}, and C := F|∂M . Suppose deg C �= 0. Then there exists a
permutation π of 1, 2, . . . , n such that

n⋂

i=1

Si
π(i) �= ∅.

Now consider the rental harmony problem. Following Su [21], suppose
there are n housemates, and n rooms to assign, numbered 1, . . . , n. Let xi

denote the price of the i-th room, and suppose that the total rent is 1. Then
x1 + . . . + xn = 1 and xi ≥ 0. From this we see that the set of all pricing
schemes forms a simplex Δn−1.

Denote by Si
j a set of price vectors p in Δn−1 such that housemate i

likes room j at these prices. Consider the following conditions:
(C1) In any partition of the rent, each person finds some room acceptable.

In other words, Si = {Si
1, . . . , S

i
n}, i = 1, . . . , n, is a (closed or open)

cover of Δn−1.
(C2) Each person always prefers a free room (one that costs no rent) to a

non-free room. In other words, for all i and j, Si
j contains Δn−1

j :=
{(x1, . . . , xn) ∈ Δn−1 |xj = 0}.
In fact, (C2) is the “dual” boundary KKM condition. Su [21, Sect. 7]

using the “dual” simplex Δ∗ and “dual” Sperner lemma proves that there
exists a permutation π of 1, 2, . . . , n, such that the intersection of the Si

π(i),
i = 1, . . . , n, is not empty. It proves the rental harmony theorem. Also, this
theorem can be derived from Corollary 3.2.

Rental Harmony Theorem [21]. Suppose n housemates in an n-bedroom house
seek to decide who gets which room and for what part of the total rent. Also,
suppose that the conditions (C1) and (C2) hold. Then there exists a partition
of the rent so that each person prefers a different room.

Let us consider an extension of this theorem. Suppose there are some
constraints fi(p) ≤ 0, i = 1, . . . , n, for price vectors. Let M := {p ∈
Δn−1 | f1(p) ≤ 0, . . . , fk(p) ≤ 0} be a manifold of dimension n − 1. Let Si

j
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be sets of price vectors p in M such that housemate i likes room j at these
prices. Consider the following conditions:
(A1) Si = {Si

1, . . . , S
i
n}, i = 1, . . . , n, is a cover of M .

(A2) deg C �= 0, where C := F|∂M , F := {F1, . . . , Fn}, and Fj :=
⋃n

i=1 Si
j .

The following theorem is equivalent to Corollary 3.2.

Theorem 3.2. Suppose n housemates in an n-bedroom house seek to decide
who gets which room and for what part of the total rent. Also, suppose that
the conditions (A1) and (A2) hold. Then there exists a partition of the rent
so that each person prefers a different room.

4. KKMS type theorems with boundary conditions

Let us extend definitions from Sect. 2 for any set of points (vectors) V :=
{v1, . . . , vm} in R

n. Denote by cV the center of mass of V , cV := (v1 + · · · +
vm)/m.

Let U = {U1, . . . , Um} be an open cover of a space T and Φ =
{ϕ1, . . . , ϕm} be a partition of unity subordinate to U . Let

ρU,Φ,V (x) :=
m∑

i=1

ϕi(x)vi.

Suppose cV lies outside of the image ρU,Φ,V (T ) in R
n. Let for all x ∈ T

fU,Φ,V (x) :=
ρU,Φ,V (x) − cV

||ρU,Φ,V (x) − cV || .

Then fU,Φ,V is a continuous map from T to S
n−1.

In [15, Lemmas 2.1 and 2.2] we proved that the homotopy class
[fU,Φ,V ] ∈ [T,Sn−1] does not depend on Φ and then the homotopy class
[fU,V ] in [T,Sn−1] is well define.

Notations 4.1. Denote the homotopy class [fU,V ] in [T,Sn−1] by μ(U , V ).

Note that for the case V = Vert(Δn) we have μ(U , V ) = μ(U).
In [15, Lemma 2.4] we show that this invariant is well defined also for

closed covers. As above we call a family of sets S = {S1, . . . , Sm} as a cover
of a space T if S is either an open or closed cover of T .

Definition 4.1. Let I be a set of labels of cardinality m. Let V := {vi, i ∈ I},
be a set of points in R

n. Then a nonempty subset B ⊂ I is said to be balanced
with respect to V if for all i ∈ B there exist non-negative λi such that

∑

i∈B
λivi = cV , where

∑

i∈B
λi = 1 and cV :=

1
m

∑

i∈I

vi.

In other words, cV ∈ conv{vi, i ∈ B}, where conv(Y ) denote the convex hull
of Y in R

n.

First we consider an extension of Theorems 2.4.
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Theorem 4.1. Let V := {v1, . . . , vm} be a set of points in R
n. Let A be a

subspace of a space X. Let (X,A) ∈ EPn−1. Let F = {F1, . . . , Fm} be a
cover of (X,A). Suppose S := F|A is not null-homotopic. Then there is a
balanced subset B in Im with respect to V such that

⋂

i∈B
Fi �= ∅.

Proof. Assume the converse. Then there are no balanced subsets B in Im

such that {Fi, i ∈ B} have a common point. It implies that cV /∈ ρF,V (X)
and therefore, fF,V : X → S

n−1 is well defined. On the other side, it is an
extension of the map fS,V : A → S

n−1 with [fS,V ] �= 0, a contradiction. �

Remark. The assumption: “cV ∈ ρS,V (A) in R
n” is equivalent to the assump-

tion: “there is a balanced B in Im with respect to V such that the intersection
of all Si, i ∈ B, is not empty.” Thus, if cV ∈ ρS,V (A) or cV /∈ ρS,V (A) and
μ(S, V ) �= 0, then the intersection of the Fi, i ∈ B, is not empty.

Theorem 4.1 and [15, Theorem 2.3] imply the following extension of
Corollary 2.1.

Corollary 4.1. Let V := {v1, . . . , vm} be a set of points in R
n. Let F =

{F1, . . . , Fm} be a cover of B
k that is not null-homotopic on the boundary.

Then there is a balanced with respect to V subset B in Im := {1, . . . , m} such
that the intersection of all Fi, i ∈ B, is not empty.

If V = Vert(Δn), then this corollary implies the KKM theorem. It is
also implies the KKMS theorem.

Corollary 4.2 (KKMS theorem [17]). Let K be the collection of all non-empty
subsets of Ik+1. Consider a simplex S in R

k with vertices x1, . . . , xk+1. Let
V := {vσ, σ ∈ K} ⊂ R

k, where vσ denotes the center of mass of Sσ :=
{xi, i ∈ σ}.

Let C := {Cσ, σ ∈ K} be a cover of |Δk| such that for every J ⊂ Ik+1

the simplex ΔJ that is spanned by vertices from J is covered by {Cσ, σ ∈ J}.
Then there exists a balanced collection B in K with respect to V such that

⋂

σ∈B
Cσ �= ∅.

Proof. The assumptions of the corollary imply that μ(C, V ) = deg(fC,V ) = 1.
Thus, Corollary 4.1 yields the corollary. �

There are many extensions of the Sperner and KKM lemmas, in par-
ticular, that are Tucker’s and Ky Fan’s lemmas [2,4,12–15]. Actually, these
lemmas can be derived from Theorem 4.1 using certain sets V . Let us consider
as an example a generalization of Tucker’s lemma.

Corollary 4.3. Let V := {±e1, . . . ,±en}, where e1, . . . , en is a basis in R
n.

Let F = {F1, F−1 . . . , Fn, F−n} be a cover of Bk that is not null-homotopic
on the boundary. Then there is i such that the intersection of Fi and F−i is
not empty.
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In particular, if F is antipodally symmetric on the boundary of Bk, i.e.
for all i we have S−i = −Si, where Sj := Fj |Sk−1 , then there is i such that
Fi ∩ F−i �= ∅.
Proof. Note that any balanced subset with respect to V consists of pairs
(i,−i), i = 1, . . . , n. It yields the first part of the theorem.

By assumption, S is antipodally symmetric on S
k−1. Then ρS,V : Sk−1 →

R
n is an odd (antipodal) map. If k > n, then the Borsuk-Ulam theorem

implies there x ∈ S
k−1 such that ρS,V (x) = 0. Therefore, there is i such that

Si ∩ S−i �= ∅.
If for all i we have Si ∩ S−i = ∅, then k ≤ n. Then the odd mapping

theorem (see [14]) implies that k = n and deg(fS,V ) is odd. Thus, μ(S, V ) �= 0
and from Theorem 4.1 follows the second part of the corollary. �
Definition 4.2. Let V := {v1, . . . , vm} be a set of points in R

n. Let T be a
triangulation of an n-dimensional manifold M . Let L : Vert(T ) → Im be a
labeling. We say that a simplex s ∈ T is BL (Balanced Labelled) if the set of
labels L(s) := {L(v), v ∈ Vert(s)} is balanced with respect to V

[15, Theorems 3.3 and 3.5] yield the following theorem.

Theorem 4.2. Let V := {v1, . . . , vm} be a set of points in R
n. Let T be a

triangulation of an oriented manifold M of dimension n with boundary. Let
L : Vert(T ) → {1, 2, . . . ,m} be a labeling such that T has no BL-simplices on
the boundary. Then T must contain at least |deg(L, ∂T )| distinct (internal)
BL-simplices.

Corollary 4.4. Let T be a triangulation of a compact oriented PL-manifold
M of dimension (m− 1) with boundary. Then for any labeling L : Vert(T ) →
{1, 2, . . . ,m} the triangulation T must contain at least |deg(L, ∂T )| fully col-
ored (m − 1)-simplices.

Proof. Let V := {v1, . . . , vm} be the set of vertices of an (m − 1)-simplex in
R

m−1. Then Im is the only balanced subset in Im with respect to V . Thus,
Theorem 4.2 yields the corollary. �
Corollary 4.5. Let T be a triangulation of Bn that antipodally symmetric on
the boundary. Let L : Vert(T ) → {+1,−1, . . . ,+n,−n} be a labelling that
is antipodal on the boundary. Suppose there are no complementary edges
on the boundary. Then deg(L, ∂T ) is an odd integer and there are at least
|deg(L, ∂T )| internal complementary edges.

(An edge in T is called complementary if its two vertices are labelled by
opposite numbers.)

Proof. Let V := {±e1, . . . ,±en}, where e1, . . . , en is an orthonormal basis
in R

n. Then any balanced subset with respect to V consists of pairs (i,−i),
i = 1, . . . , n. The fact that deg(L, ∂T ) is odd follows from the odd mapping
theorem, see [12]. Thus, Theorem 4.2 completes the proof. �

In Fig.2 is shown a labeling with deg(L, ∂T ) = 3. Then Corollary 4.5
yield that there are at least three complimentary edges.
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Figure 2. Since deg(L, ∂T ) = 3, there are three comple-
mentary edges
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