Игры с неполной информацией

Рябов П.П.

ВШЭ, Москва 2020

Байесовы игры

- \circ Игроки имеют типы T_i (тип игрока включает информированность, полезности и представления об остальных)
- \circ (Ф-ция полезности) $u_i:A_N imes T_N o \mathbb{R}$, где A_N множество действий игроков
- \circ (Представления игрока о других) $p_i:T_i o riangle(T_{-i}),\; p_i(t_i):=p(t_{-i}|t_i)$
- \circ Данные (T_i, u_i, p_i) известны всем.
- \circ Стратегия игрока $s_i:T_i \to \mathsf{A}_i$

Пример

$$(p = \frac{1}{12}) \begin{array}{c} A_2 & B_2 \\ B_1 & (1,1) & (1,0) \\ B_1 & (0,0) & (0,1) \end{array} \qquad (p = \frac{1}{4}) \begin{array}{c} A_1 & A_2 & B_2 \\ B_1 & (1,0) & (1,1) \\ B_1 & (0,1) & (0,0) \end{array}$$
$$(p = \frac{1}{6}) \begin{array}{c} A_2 & B_2 \\ B_1 & (0,1) & (0,0) \\ B_1 & (2,0) & (1,1) \end{array} \qquad (p = \frac{1}{2}) \begin{array}{c} A_1 & (0,0) & (0,1) \\ B_1 & (2,1) & (1,0) \end{array}$$

Пример

$$(p = \frac{1}{12}) \begin{array}{c} A_2 & B_2 \\ B_1 & (1,1) & (1,0) \\ B_1 & (0,0) & (0,1) \end{array} \qquad (p = \frac{1}{4}) \begin{array}{c} A_1 & A_2 & B_2 \\ B_1 & (1,0) & (1,1) \\ B_1 & (0,1) & (0,0) \end{array}$$

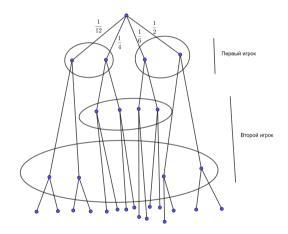
$$(p = \frac{1}{4}) \begin{array}{c} A_1 & B_2 \\ B_1 & (0,1) & (0,0) \\ B_1 & (2,0) & (1,1) \end{array} \qquad (p = \frac{1}{2}) \begin{array}{c} A_2 & B_2 \\ B_1 & (0,0) & (0,1) \\ B_1 & (2,1) & (1,0) \end{array}$$

$$(p = \frac{1}{2}) \begin{array}{c} A_1 & (0,0) & (0,1) \\ B_1 & (2,1) & (1,0) \end{array}$$

$$(p = \frac{1}{2}) \begin{array}{c} A_1 & (0,0) & (0,1) \\ B_1 & (2,1) & (1,0) \end{array}$$

$$(p = \frac{1}{2}) \begin{array}{c} A_1 & (0,0) & (0,1) \\ B_1 & (0,0) & (0,1) \\ B_1 & (0,0) & (0,1) \end{array}$$

Пример: Дерево игры



Пример: Смешанные стратегии

- \circ У первого игрока есть строго доминирующая стратегия: играть A_1 , если I; играть B_1 , если II.
- \circ Если второй игрок оказался в ситуации I, то вероятность $\{I,I\}$ равна $\frac{\frac{1}{12}}{\frac{1}{12}+\frac{1}{6}}=\frac{1}{3}$, а вероятность $\{II,I\}-\frac{2}{3}$.

Пусть второй игрок играет A_2 с вероятностью p, а B_2 с вероятностью 1-p. Тогда его выигрыш расчитывается по формуле $\frac{1}{3}p\times 1+\frac{1}{3}(1-p)\times 0+\frac{2}{3}p\times 0+\frac{2}{3}(1-p)\times 1=\frac{2}{3}-\frac{1}{3}p$. Следовательно, второму выгоднее играть B_2 .

 \circ Если второй оказался в ситуации II, то ему выгоднее играть A_2 .

Ожидаемый выигрыш

Ожидаемый выигрыш игрока і в чистых стратегиях:

$$\sum_{t_i} \sum_{t_{-i}} p(t_i, t_{-i}) U_i(s_i, s_{-i}; (t_i, t_{-i}))$$

Theorem

В играх с неполной информацией с конечным множеством типов T_i Баесово равновесие существует в смешанных стратегиях.

Два игрока участвуют в аукционе первой цены. Хотим найти по оценке предмета v, равномерно распределённой для каждого игрока на отрезке [0,1], симметричное равновесие b(v). То есть, стратегию b(v), являющуюся оптимальным ответом на саму себя.

Будем искать b(v) среди дифференцируемых монотонно возрастающих фукнций $b:[0,1] \to [0,1]$

Обозначим ответ на оценку v одного из игроков b(v) за \tilde{b}

$$(v - \tilde{b})P(b(v_2) < \tilde{b}) = (v - \tilde{b})P(v_2 < b^{-1}(\tilde{b})) = (v - \tilde{b})b^{-1}(\tilde{b})$$

Обозначим ответ на оценку v одного из игроков b(v) за \tilde{b}

Тогда выигрыш игрока

$$(v - \tilde{b})P(b(v_2) < \tilde{b}) = (v - \tilde{b})P(v_2 < b^{-1}(\tilde{b})) = (v - \tilde{b})b^{-1}(\tilde{b})$$

$$\frac{d()}{d\tilde{b}} = -b^{-1}(\tilde{b}) + (v - \tilde{b}) \frac{1}{b'(b^{-1}(\tilde{b}))} = 0$$

Обозначим ответ на оценку v одного из игроков b(v) за \tilde{b}

Тогда выигрыш игрока
$$(v-\tilde{b})P(b(v_2)<\tilde{b})=(v-\tilde{b})P(v_2< b^{-1}(\tilde{b}))=(v-\tilde{b})b^{-1}(\tilde{b})$$

$$\frac{d()}{d\tilde{b}}=-b^{-1}(\tilde{b})+(v-\tilde{b})\frac{1}{b'(b^{-1}(\tilde{b}))}=0$$

$$v-\tilde{b}=b^{-1}(\tilde{b})b'(b^{-1}(\tilde{b}))$$

$$v - \tilde{b} = b^{-1}(\tilde{b})b'(b^{-1}(\tilde{b}))$$

$$\tilde{b} = b(v)$$

$$v - b(v) = b^{-1}(b(v))b'(b^{-1}(b(v)))$$

$$v - b(v) = vb'(v)$$

$$v - b(v) = vb'(v)$$
$$\frac{d}{dv}(\frac{v^2}{2}) = \frac{d}{dv}(vb(v))$$

$$V - b(v) = vb'(v)$$

$$\frac{d}{dv}(\frac{v^2}{2}) = \frac{d}{dv}(vb(v))$$

$$\frac{v^2}{2} = const + vb(v)$$
Пусть $b(0) = 0$

$$b(v) = \frac{v}{2}$$

Аукцион

Theorem (Роджер Майерсон)

- о Найдено симметричное равновесие в игре
- о Игрок, оценивший предмет в 0, ничего не платит
- о Предмет выигрывает человек с максимальной оценкой
- ⇒ Средний выигрыш продавца в аукционе первой цены равен среднему выигрышу продавца в аукционе второй цены.

Перечень использованных источников

- В. И. Данилов "Лекции по теории игр"
- Н. Калинин Лекция 11(фрагмент)
- А. В. Саватеев Аукцион первой цены
- А. В. Саватеев Аукцион первой цены-2