Семинар 9.

Всюду предполагается, что $\operatorname{char} \mathbf{k} \neq 2$.

- **Задача 1.** Пусть \mathcal{C} невырожденная коника в \mathbb{P}^2 и $S \in \mathbb{P}^2$ точка, не лежащая на \mathcal{C} . Докажите, что через S проходят ровно две различные касательные прямые к конике \mathcal{C} .
- Задача 2. В условиях предыдущей задачи пусть коника \mathcal{C} задана уравнением $\{\sum_{i,j=0}^2 a_{ij}x_ix_j=x^TAx=0\}$, где $x=(x_0,x_1,x_2)^T$ столбец однородных координат в \mathbb{P}^2 , $A=(a_{ij})$ симметрическая (3×3) -матрица, а точка S имеет координаты $(y_0:y_1:y_2)$. Найдите уравнение поляры $p_S(\mathcal{C})$ точки S относительно коники \mathcal{C} .
- **Задача 3.** В условиях задачи 1 пусть X произвольная точка на конике \mathcal{C} . С помощью линейки постройте касательную прямую к \mathcal{C} в точке X.
- Задача 4. Проективное преобразование $f: \mathbb{P}^1 \to \mathbb{P}^1$ называется инволюцией, если f не является тождественным преобразованием и $f^2 = \mathrm{id}_{\mathbb{P}^1}$. На прямой \mathbb{P}^1 возьмем две различные точки A и B и рассмотрим отображение $f: \mathbb{P}^1 \to \mathbb{P}^1, \ X \mapsto Y$, где пара точек X, Y гармонически делит пару точек A, B. Докажите, что f инволюция. Докажите, что если основное поле \mathbb{K} алгебраически замкнуто, то всякая инволюция на \mathbb{P}^1 получается вышеуказанным образом.