Решения коалиционных игр

Козлов Василий

7 декабря 2020 г.

Игра "Оркестр"

s - певец,р - пианист,d - ударник

$$N = \{s,p,d\}, v(s) = 20, v(p) = 30, v(d) = 0$$

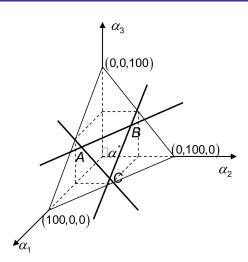
 $v(s,p) = 80, v(s,d) = 50, v(p,d) = 65, v(s,p,d) = 100$

(здесь и далее v - это характеристическая функция игры)

$$\begin{cases} \alpha_1 + \alpha_2 + \alpha_3 = 100 \\ \alpha_1 + \alpha_2 \ge 80, \alpha_2 + \alpha_3 \ge 65, \alpha_1 + \alpha_3 \ge 50 \\ \alpha_1 \ge 20, \alpha_2 \ge 30, \alpha_3 \ge 0 \end{cases}$$

множество, задающееся этой системой, называется ядром

Игра "Оркестр"



Определение ядра

Определение Множество всех допустимых недоминируемых распределений коалиционной игры V называется **ядром** и обозначается C(V)

Иначе говоря, должны выполняться условия:

N- тотальная коалиция, $K \subset \mathbb{N}$:

$$1) \sum_{i \in N} \alpha_i = v(N)$$

$$2)\sum_{i\in K}\alpha_i\geq v(K)$$

Основные свойства ядра

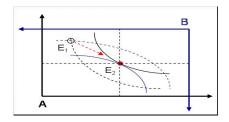
- ullet C(N) это замкнутое, ограниченное подмножество V(N)
- **Е**сли также рассматриваются коррелированные стратегии, то C(N) это выпуклый многогранник
- Элементы из ядра оптимальны по Парето, и индивидуально рацональны. Поэтому они могут претендовать на звание хорошего решения

Ядро может быть пустым

Пример Пусть трое делят пирог и любая пара может обеспечить себе его целиком. Тут ядро пусто, а значит они вряд ли смогут договориться

Ядро экономики

Пусть у участников $i \in N$ имеются начальные запасы $\omega_i \in \mathbb{R}_+^n$. Спрашивается как "правильно" распределить их? То есть нужно найти такие $x_i \in \mathbb{R}_+^n$, $i \in N$: $\sum_i x_i = \sum_i \omega_i$, чтобы $u_i(x_i) \geq u_i(\omega_{i,K}') \ \forall K \subset N$. Множество, состоящее из таких x_i и есть **ядро экономики**. Это понятие первоначально появилось у Эжворта, в 1881 г. в частном случае:



Решение Неймана-Моргенштерна

Определение Назовем дележом коллективно и индивидуально рациональный вектор $x \in V(N)$. E(V)-множество всех дележей игры V Определение H-M решением игры V называется $Z \subset E(V)$ т.ч:

- 1) $y \in E(V) \backslash \mathsf{Z} \Rightarrow \exists \mathsf{x} \in \mathsf{Z}$ такой что x доминирует y
- 2) $x,y \in Z \Rightarrow x$ не доминирует у

Решение Неймана-Моргенштерна

Пример В игре "Дележ 300 \$" между тремя игроками не было решения в смысле ядра, зато оно появилось в смысле H-M решения: (150,150,0),(150,0,150),(0,150,150). Действительно, ни какой из этих дележей друг друга не доминирует. При этом произвольный дележ (a,b,c) доминируется одним из них. Замечание В 1967г. был построен пример игры на 10 лиц без H-M решения.

Нуклеолус или N-ядро

Определение Эксцессом коалиции S при данном платежном векторе x называется:

$$e(S,x) = v(S) - \sum_{i \in S} x_i$$

Дележ x принадлежит ядру тогда и только тогда, когда все эксцессы ≤ 0 , лежит в ϵ -ядре когда все эксцессы $\leq \epsilon$. Сдвигая таким образом и дальше стенки многогранника, мы получим единственную точку (лексикографически минимальную), которая называется Нуклеолусом или N-ядром

Переговорное множество

Определение Переговорной точкой игры называется такой дележ α , что $\forall i,j$, если для i существует коалиция $S:i\in S,j\notin S$ с дележом β , лучшим по сравнению с α для всех членов S, то для j существует коалиция $T:j\in T,i\notin T$ с доступным ей дележом γ , который слабо лучше, чем β для $S\bigcap T$ и слабо лучше α для $T\setminus S$

Вектор Шепли

Вектор $(\varphi_i(v))$ называется вектором Шепли, если:

$$\varphi_i(v) = \sum_{\{s|i \in S \subset N\}} \frac{(s-1)!(n-s)!}{n!} (v(S) - v(S \setminus \{i\}))$$

то есть мы смотрим на всевозможные порядки присоединения игроков к тотальной коалиции, смотрим что привнес каждый и усредняем по всем таким порядкам

Вектор Шепли

Пример Найдем вектор Шепли в игре "Оркестр":

	S	Р	D
SPD	20	60	20
PSD	50	30	20
DSP	50	50	0
DPS	35	65	0
SDP	20	50	30
PDS	35	30	35
$\varphi_i(v)$	35	47,5	17,5