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Eisenstein Series
We shall demonstrate existence of automorphic objects.

Proposition
For k > 2 the series

∑
l∈L\0 l

−k absolutely converges and defines a
homogeneous function of the lattice L ⊂ C
Convergence follows from the integral criteria: consider the
parallelogram Π0 = {α1ω1 + α2ω2|, |αi | ≤ 1

2} and put Πl = l + Π0.
Evidently ∪l∈LΠl = C For l such that
|l | > r = maxΠ0 |z | = 1

2 max(|ω1 ± ω2|).
For rather small ρ the disc Dρ = {Z ||z | < ρ} belongs to Π0 , hence
∪l∈L\0Πl ⊂ C \ Dρ = {z ||z | ≥ ρ}.
For |l | > 1

2 maxΠl
|z | by triangle inequality , hence

|l |−k < 2k minΠl
|z |−k . The square of Πl equals

2|=(ω1ω̄2 − ω2ω̄1)|. So

|l |−k < 1
2|=(ω1ω̄2 − ω2ω̄1)|

∫
Πl

2kd xd y

|z |k
.
The property to be homogeneous is evident.



Split a partial sum SI =
∑

l∈I |l |−k over I for I ⊂ L\0 in two terms:
S0
I =

∑
l∈I ||l |≤r l

−k and S∞I =
∑

l∈I ||l |>r l
−k

The first term is a finite sum bounded by finite sum
S0 =

∑
l∈L\0||l |≤r l

−k . The second can be bounded by application
of the the estimate of any term by the integral:

∑
l∈I ||l |>r

l−k <
∑

l∈I ||l |>r

1
2|=(ω1ω̄2 − ω2ω̄1)|

∫
Πl

2kd xd y

|z |k
=

1
2|=(ω1ω̄2 − ω2ω̄1)|

∫
ΦI

2kd xd y

|z |k
,

where ΦI = ∪l∈I ||l |>rΠl . As ΦI ⊂ ∪l∈L\0Πl ⊂ {z ||z | ≥ ρ}, the
integral is bounded by the integral over domain {z ||z | ≥ ρ} The
last integral converges at infinity, so partial sums are bounded,
hence the series

∑
l∈L\0 |l |−k} converges.



General Remarks.
We will construct periodic function by application the following
general
Fact. Let a group G acts on vector space V . Then the sum∑

g∈G g(v) is G -invariant.
For finite group this argument is very useful, but for infinite group
the convergence of the required series should be proved.
We demonstrate this for the case G = Z, V be the space of
functions on R and action is the shift of the argument: µ ∈ Z maps
a function f (x) to f (x − µ).The simplest function (= a vector in
the vector space of function) is the monomial xn.
For k ≥ 0 the series is very divergent (the terms do not tend to 0).
For k < −1 the series is absolutely uniformly convergent on
compact sets, this following from comparison with sum

∑∞
µ=1 µ

k .
From such shape of convergence follow periodicity (as Z
invariance).
For k = −1 the series in standard treating as limM→∞,N→∞

∑N
−M

diverges according to asymptotic (x + µ)−1 ∼ µ−1 and divergence
of the harmonic series

∑
µ−1.



Eisenstein Summation.

Eisenstein proposed a way of redefining of summation over all
integers Z as

∑
e =limM→∞

∑M
−M . In this sense the series for

k = −1 converges as

M∑
µ=−M

1
x − µ

=
1
x

+
M∑
µ=1

(
1

x − µ
+

1
x + µ

)
,

1
x − µ

+
1

x + µ
=

2x
x2 −mu2 ∼

−2x
µ2 .

This series absolutely uniformly convergent on compact sets. Note
that such a regularization breaks the translation invariance, hence
for periodicity of the regularized series we shall apply extra
arguments.



Trigonometric Functions according to Eisenstein

Definition
The Eisenstein trigonometric functions are the following series:
εn(x) =

∑∞
−∞(x + µ)−n for n > 1; ε1(x) =

∑
e(x + µ)−1

Lemma
a) for n > 1 the function εn(x) is periodic: εn(x + 1) = εn(x)
b) εn(−x) = (−1)nεn(x)
c)εn(x)′ = −nεn+1(x)
d) the function ε1(x) is periodic: ε1(x + 1) = ε1(x)

Draft of a proof. First we prove absolute uniform convergence of
series on the bounded sets. The last can be proved by the following
consideration. Let |x | < K ∈ then for µ > K
|x + µ|−n < |µ− K |−n and

∑∞
µ=K+2 |x + m|−n ≤

∑∞
ν=2 ν

−n;
ν−n < max[ν−1,ν] |x |−n ⇒ ν−n <

∫
[ν−1,ν] |x |

−nd x ⇒
∑∞

ν=2 ν
−n <∫

[1,∞] |x |
−nd x = 1

n−1 .



a), b) for n > 1 and c) follow immediately from the absolute
convergence and standard theorems of the Calculus. I leave this as
the homework. Convergence of the Eisenstein summation for ε1 is
also the homework.
b) for n = 1 is evident as the Eisenstein summation is invariant
with respect to change of sign. A Proof of d)

ε1(x + 1)− ε1(x) = lim
M→∞

 M∑
µ=−M

1
x + 1− µ

−
M∑

µ=−M

1
x − µ

 =

= lim
M→∞

(
1

x + 1 + M
− 1

x −M

)
= 0



Laurent series at the point 0
Put γm =

∑
µ6=0 µ

−m. This series converges for m ≥ 2

Lemma
For |x | < 1 ε1(x) = x−1 −

∑∞
m=2 γmx

m−1

A proof is based on the formula for geometric series: for |s| < 1
1

1−s =
∑∞

j=0 s
j , so 1

x−µ = − µ−1

1−x/µ = −
∑∞

m=1 µ
−mxm−1 Hence

ε1(x) = 1
x +

∑∞
µ=1

(
1

x−µ + 1
x+µ

)
=

= 1
x +

∑∞
µ=1

(
−
∑∞

m=1 µ
−mxm−1 −

∑∞
m=1(−µ)−mxm−1) =

1
x −

∑∞
µ 6=0

∑∞
m=1 µ

−mxm−1 ?
= 1

x −
∑∞

m=2
∑∞

µ6=0 µ
−mxm−1 =

1
x −

∑∞
m=2 γmx

m−1.
The prelast equality is changing of order of summation, so this
should be justified. This is based on the bound
µ−2l |x |2l−1 ≤ µ−2|x |2l−1, so the sum

∑
l

∑
µ µ
−2l |x |2l−1 is

bounded by
∑

l

∑
µ µ
−2|x |2l−1 which factorise into product∑

µ µ
−2∑

l |x |2l−1 of convergent series. I left details as a
homework. The term by term differentiation produces the
expansion for all ε’s



Addition Formulas.
Consider the identity x + y − ν = (x − µ) + (y − ν + µ) and divide
it by (x − µ)(y − ν + µ)(x + y − ν)
Perform first the Eisenstein summations over µ and second over ν:

1
x−µ

1
y−ν+µ = 1

x+y−ν

(
1

x−µ + 1
y−ν+µ

)
∑

µ∑
µ

1
x−µ

1
y−ν+µ = 1

x+y−ν (ε1(x) + ε1(y − ν))

‖ ‖∑
µ

1
x−µ

1
y−ν+µ = 1

x+y−ν (ε1(x) + ε1(y))∑
ν∑

ν

∑
µ

1
x−µ

1
y−ν+µ =

∑
ν

1
x+y−ν (ε1(x) + ε1(y − ν))

∦ ‖∑
κ

∑
µ

1
x−µ

1
y−κ 6= ε1(x + y) (ε1(x) + ε1(y))

‖ ‖
ε1(x)ε1(y) 6= ε1(x + y) (ε1(x) + ε1(ν))

In this calculation we change variable of summation κ = ν − µ,
hence change order of summation which is not legal.



We resolve this trouble by passing to the equality

1
(x − µ)2

1
(y − ν + µ)2 =

=
1

(x + y − ν)2

(
1

(x − µ)2 +
1

(y − ν + µ)2

)
+

+
2

(x + y − ν)3

(
1

(x − µ)
+

1
(y − ν + µ)

)
.

This identity is d
dx

d
dy of the initial identity. For average of this

identity the change the order of summation is legal as series is
absolutely convergent. This is homework also.
As result we get

ε2(x)ε2(y) = ε2(x+y) (ε2(x) + ε2(y))+2ε3(x+y) (ε1(x) + ε1(y))



Consider the expansion of this identity near y = 0

ε2(x)

(
1
y2 + γ2 + · · ·

)
=

=

(
ε2(x) + ε2(x)′y +

1
2
ε2(x)′′y2 + · · ·

)(
1
y2 + γ2 + · · ·

)
+

=
(
ε3(x) + ε3(x)′y + · · ·

)(1
y

+ ε1(x) + · · ·
)

The comparison of the constants in y get some quadratic relation.
The expansion near x + y = 0 produces another relation. After
some elementary calculations (See Weil Chapter II) one get
dε1(x)/dx = −ε1(x)2 +−3γ2.
Put π̃ =

√
3γ2 and e(x) = (ε1(x) + π̃)/(ε1(x)− π̃). Then e(0) = 1

and e(x)′ = 2π̃ie(x). Hence the Tailor series of this function at 0
coincides with series for exp(2π̃ix).


