q-Expansion of the Eisenstein Series. Modular forms.

Put $\tilde{\pi}=\sqrt{3 \gamma_{2}}$ and $\mathrm{e}(x)=\left(\varepsilon_{1}(x)+\tilde{\pi} i\right) /\left(\varepsilon_{1}(x)-\tilde{\pi} i\right)$. Then $\mathrm{e}(0)=1$ and $\mathrm{e}(x)^{\prime}=2 \tilde{\pi} i \mathrm{e}(x)$. Hence the Tailor series of this function at 0 coincides with series for $\exp (2 \tilde{\pi} i x)$. Conversely

$$
\varepsilon_{1}(x)=2 \tilde{\pi} i \frac{(\mathrm{e}(x)+1)}{(\mathrm{e}(x)-1)}=\left\{\begin{array}{cc}
\tilde{\pi} i-2 \tilde{\pi} i \sum_{l=0}^{\infty} \mathrm{e}(\mid x) & \Im x>0 \\
-\tilde{\pi} i+2 \tilde{\pi} i \sum_{l=0}^{\infty} \mathrm{e}(-\mid x) & \Im x<0
\end{array}\right.
$$

Hence for $m>1$

$$
\varepsilon_{m}(x)==\left\{\begin{array}{cc}
\left.2 \tilde{\pi} i \frac{(-1)^{m}}{(m-1)!} \sum_{l=0}^{\infty}(2 \tilde{\pi} i l)^{m-1} \mathrm{e}(\mid x)\right) & \Im x>0 \\
2 \tilde{\pi} i \frac{1}{(m-1)!} \sum_{l=0}^{\infty}(2 \tilde{\pi} i l)^{m-1} \mathrm{e}(-\mid x) & \Im x<0
\end{array}\right.
$$

The Eisenstein series $e_{k}(\tau)=\sum_{(m, n) \neq(0,0)}(m \tau+n)^{-k} ., k \geq 4$ can be rewrote as:
$e_{k}(\tau)=\sum_{(0, n) \neq(0,0)}(m \tau+n)^{-k}+\sum_{(m, n), m>0}(m \tau+n)^{-k}+$ $\sum_{(m, n), m<0}(m \tau+n)^{-k}=\gamma_{k}+\sum_{m>0} \varepsilon_{k}(m \tau)+\sum_{m<0} \varepsilon_{k}(m \tau)$.

Denote e (τ) by q. As $\Im \tau>0$ for even k we have (for odd k the Eisenstein series evidently vanishes)

$$
e_{k}(\tau)=\gamma_{k}+2 \frac{(2 \tilde{\pi} i)^{k}}{(k-1)!} \sum_{m>0} \sum_{l \geq 0} I^{k-1} q^{m l}
$$

This series absolutely converges for $|q|<1$, we left this as a homework. Hence it is holomorphic function in the unit disc. this motivate the following definition:
Definition
A function $f(\tau)$ on the upper half-plane is called a modular form of the weight k if it is
a) automorphic of the weight k :
$f((a \tau+b) /(c \tau+d))=(c \tau+d))^{k} f(\tau)$ for $a d-b c=1$,
$a, b, c, d \in \mathbb{Z}$, The expression $(c \tau+d)$ is known as automorphic factor;
b) a Laurent power series in $q=\exp (2 \tilde{\pi} i \tau)$:

$$
f(\tau)=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

Unformal Remark.

The conditions a) an b) are almost complement. The common part of this conditions reflects that the matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ acts on τ as the shift $\tau \mapsto \tau+1$ and the automorphic factor is equal to 1 , so automorphic form should depends in τ through q. At the other hand, the expression f as function in q is not adopted to the automorphy condition and regularity in $q=0$ is not natural for a function in τ.
The automorphic factor is the subject of so-called cocycle condition which get compatibility of the automorphy condition with multiplication of matricis:

$$
(c A+d C) \tau+(c B+d D)=\left(c \frac{A \tau+B}{C \tau+D}+d\right)(C \tau+D)
$$

The Group Theoretical Approach.

The fraction-linear action of $\mathrm{SL}_{2}(\mathbb{R})$ on the upper half-plane \mathbb{H} is transitive, indeed $\tau=x+y i=\frac{(x / \sqrt{y}) i-\sqrt{y}}{((1 / \sqrt{y}) i+0)}$. The stabiliser of the point i equals to
$\mathrm{SO}_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a^{2}+b^{2}=1\right\}=\{z=a-b i| | z \mid=1\}$.
So $\mathbb{H}=\mathrm{SL}_{2}(\mathbb{R}) / \mathrm{SO}_{2}(\mathbb{R})$. Note that for $\mathrm{SO}_{2}(\mathbb{R})$ the automorphic $(-b i+a)$ factor equals z. Correspond to a function f on the upper Half-plane a function \check{f} on $\mathrm{SL}_{2}(\mathbb{R})$ by the rule

$$
\check{f}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)=(c i+d)^{-k} f\left(\frac{a i+b}{c i+d}\right) .
$$

Accordig to the cocycle condition for automorphic factor, this function transform under right action of $\mathrm{SO}_{2}(\mathbb{R})=\{z| | z \mid=1\}$. by character $z \mapsto z^{-k}$, so it belongs to representation of $\mathrm{SL}_{2}(\mathbb{R})$, induced from this character of $\mathrm{SO}_{2}(\mathbb{R})$. At the other hand, according to the cocycle condition for automorphic factor, the automorphy condition for f is equivalent to invariance of \check{f} with respect to left action of $\mathrm{SL}_{2}(\mathbb{Z})$.

The automorphic factor $(c \tau+d)$ is trivial for unipotent subgroup $\mathrm{N}=\left\{\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)\right\}$, hence the average any power of automorphic factor over set of cosets $\Gamma^{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z}),\left(\Gamma^{\infty}=\mathrm{SL}_{2}(\mathbb{Z}) \cap \mathrm{N}\right)$ is $\mathrm{SL}_{2}(\mathbb{Z})$-invariant.

Lemma

The set of cosets $\Gamma^{\infty} \backslash \mathrm{SL}_{2}(\mathbb{Z})$ is equal to the set of coprime pairs (c, d).
The map is evident $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \mapsto(c, d)$. The Γ^{∞}-coset is equal to $\left\{\left.\left(\begin{array}{cc}a+j c & b+j d \\ c & d\end{array}\right) \right\rvert\, j \in \mathbb{Z}\right\}$, so the map is well define on the coset. c and d are coprime as the matrix is unimodular.
Conversely, according to the Euclid algorithm, the grater common divisor of c and d, which is equal to 1 , has the linear presentation $1=x c+y d$, and (c, d) is the image of unimodular matrix
$\left(\begin{array}{cc}y & -x \\ c & d\end{array}\right)$ and the map is surjective.

If matrices $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and $\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ c & d\end{array}\right)$ both are unimodular, $\left(a^{\prime}-a\right) d-\left(b^{\prime}-b\right) c=0 ; c$ and d are coprime, so $\left(a^{\prime}-a\right)$ is divisible by c, say $a^{\prime}-a=j c$ then $b^{\prime}-b=j d$, hence this matrices lie in one coset. We prove that the map is injective. in this way we get the series

$$
\sum_{c, d \text { coprime }}(c \tau+d)^{-k}
$$

Essentially this is the Eisnstein series as for any nonzero pair one have unique decomposition $(m, n)=f(c, d)$, where f is gcd of m and n, so

$$
\begin{gathered}
\sum_{(m, n) \neq(0,0)}(m \tau+n)^{-k}=\sum_{c, d \text { coprime }, f>0}(f(c \tau+d))^{-k}= \\
=\sum_{f=1}^{\infty} f^{-k} \times \sum_{c, d \text { coprime }}(c \tau+d)^{-k} .
\end{gathered}
$$

So, we present the Eisenstein series in Group theoretical approach.

