Семинар 5.

В задачах 1-5 предполагается, что основное поле ${\bf k}$ алгебраически замкнуто и имеет характеристику $\neq 2, X \subset \mathbb{P}^3$ - невырожденная квадрика по Штейнеру в \mathbb{P}^3 , а S_1 и S_2 две серии образующих прямых на X.

- Задача 1. Напомним, что полярой прямой $l \subset \mathbb{P}^3$ относительно квадрики X называется прямая $p_l X = \bigcap_{a \in l} p_a X$ пересечения поляр всех точек прямой l относительно X. Докажите, что $x \in l$ тогда и только тогда, когда $p_l X \subset p_x X$.
- **Задача 2.** Пусть прямая l в \mathbb{P}^3 пересекает квадрику X в двух различных точках q_1 и q_2 . Постройте поляру $p_l X$ прямой l по точкам q_1 , q_2 и сериям S_1 и S_2 образующих прямых на X.
- Задача 3. Для точки $a \notin X$ рассмотрим полярную плоскость $\pi = p_a X$ и в ней конику $C = \pi \cap X$. Для произвольной прямой l, не проходящей через точку a, обозначим через $pr_{a,\pi}(l)$ ее проецию из точки a на плоскость π , то есть прямую $\langle a,l \rangle \cap \pi$. Опишите множество прямых $\{pr_{a,\pi}(l) \mid l \in S_1 \sqcup S_2\}$ проекций прямых из серий S_1 и S_2 на плоскость π .
- **Задача 4.** Рассмотрим две тройки различных прямых $a, c, e \in S_1$ и $b, d, f \in S_2$ и обозначим точки $A = a \cap b, B = b \cap c, C = c \cap d, D = d \cap e, E = e \cap f, F = f \cap a$. Эти точки образуют пространственный 6-вершинник ABCDEF. Докажите, что главные диагонали AD, BE, CF этого пространственного 6-вершинника пересекаются в точке.
 - Задача 5. Выведите из задач 2, 3 и 4 теорему Брианшона.
- Задача 6. Пусть \mathbf{k} произвольное поле, A коммутативная ассоциативная алгебра с единицей над полем \mathbf{k} . (Например, $A = \mathbf{k}[t_1,...,t_n]$ кольцо многочленов от n переменных над полем \mathbf{k} .) Пусть $D:A\to A$ дифференцирование алгебры A, то есть линейный оператор в A как векторном пространстве, удовлетворяющий правилу Лейбница $D(ab)=D(a)b+aD(b),\ a,b\in A$. Дифференцирование D кольца многочленов $A=\mathbf{k}[t_1,...,t_n]$, удовлетворяющее условиям $D(t_i)=1$ и $D(t_j)=0,\ j\neq i,$ называется частной производной по переменной t_i и обозначается $\frac{\partial}{\partial t_i}$. Пусть $P\in\mathbf{k}[t_1,...,t_n]$ однородный многочлен степени d. Докажите формулу Эйлера:

$$\sum_{i=1}^{n} t_i \frac{\partial P}{\partial t_i} = dP.$$