HW2

alevin57

February 2021

Readable solutions of the problems will be sent as photo or scan or pdf-file 16.03 to alevin57@gmail.com before 17.00

The symplectic group Sp_g is the group of $2g \times 2g$ matrices h the shape $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ such that $\begin{pmatrix} D^t & -B^t \\ -C^t & A^t \end{pmatrix}$ is inverse of h. So, $\operatorname{SL}_2 = \operatorname{Sp}_1$. The Siegel upper half-space H_g is the set of complex symmetric $g \times g$ matrices

The Siegel upper half-space H_g is the set of complex symmetric $g \times g$ matrices Ω with positive defined imaginary part, $\Omega^t = \Omega, \frac{\Omega - \overline{\Omega}}{2i} \gg 0$, a real matrix B is positive defined $B \gg 0$ if for any real nonzero column $v \ v^t B v > 0$

1) Prove that if B is positive defined $(v^t B v > 0, v \neq 0)$, then for any complex nonzero column $v \bar{v}^t B v > 0$.

2) a.Prove that $(\overline{\Omega}C^t + D^t)(A\Omega + B) - (\overline{\Omega}A^t + B^t)(C\Omega + D) = \Omega - \overline{\Omega}$ by analysis of the 5-tiple product

$$\left(\begin{array}{cc}\overline{\Omega} & 1_g\end{array}\right)\left(\begin{array}{cc}A^t & C^t\\B^t & D^t\end{array}\right)\left(\begin{array}{cc}0_g & -1_g\\1_g & 0_g\end{array}\right)\left(\begin{array}{cc}A & B\\C & D\end{array}\right)\left(\begin{array}{cc}\Omega\\1_g\end{array}\right)$$

b. Deduce from the previous formula that $C\Omega + D$ is invertible.

The group $\operatorname{Sp}_g(R)$ acts on H_g by the rule $\Omega \mapsto (A\Omega + B)(C\Omega + D)^{-1}$. b. 3) Check of validity of the definition of action:

a. Prove that $(A\Omega + B)(C\Omega + D)^{-1}$ is symmetric.

b. Check the identity

$$\Im\left((A\Omega+B)(C\Omega+D)^{-1}\right) = (\overline{\Omega}C^t + D)^{-1}\Im(\Omega)(C\Omega+D)^{-1},$$

Prove that the heft hand side, hence the right hand side, is positive definite. 4)Prove the cocycle condition:

$$\det\left((A\Omega + B)(C\Omega + D)^{-1}\right) =$$

$$= \det \left((A_1 \left((A_2 \Omega + B_2) (C_2 \Omega + D)^{-1} \right) + B_1 \right) \times$$

 $\times (C_1 \left((A_2 \Omega + B_2) (C_2 \Omega + D)^{-1} \right) + D_1)^{-1} \det \left((A_2 \Omega + B_2) (C_2 \Omega + D)^{-1} \right).$

where

$$\left(\begin{array}{cc}A & B\\C & D\end{array}\right) = \left(\begin{array}{cc}A_1 & B_1\\C_1 & D_1\end{array}\right) \left(\begin{array}{cc}A_2 & B_2\\C_2 & D_2\end{array}\right).$$

5) a.Prove that there is a matrix over the ring $Z[2\cos\phi]$ which is conjugate to the matrix of rotation by angle $\phi.$

b. Construct elements in $SL_2(Z)$ of orders 3, 4 and 6. What are their fixed points in the upper half plane?

c) .Construct an element in $SL_2(\mathbb{Z}[\sqrt{2}))$ of order 8. What are their fixed points in the square of upper half plane?