HW2

alevin57

February 2021

Readable solutions of the problems will be sent as photo or scan or pdf-file 16.03 to alevin57@gmail.com before 17.00

The symplectic group Sp_{g} is the group of $2 g \times 2 g$ matrices h the shape $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ such that $\left(\begin{array}{cc}D^{t} & -B^{t} \\ -C^{t} & A^{t}\end{array}\right)$ is inverse of h. So, $\mathrm{SL}_{2}=\mathrm{Sp}_{1}$.

The Siegel upper half-space H_{g} is the set of complex symmetric $g \times g$ matrices Ω with positive defined imaginary part, $\Omega^{t}=\Omega, \frac{\Omega-\bar{\Omega}}{2 i} \gg 0$, a real matrix B is positive defined $B \gg 0$ if for any real nonzero ccolumn $v v^{t} B v>0$

1) Prove that if B is positive defined $\left(v^{t} B v>0, v \neq 0\right)$, then for any complex nonzero column $v \bar{v}^{t} B v>0$.
2)a.Prove that $\left(\bar{\Omega} C^{t}+D^{t}\right)(A \Omega+B)-\left(\bar{\Omega} A^{t}+B^{t}\right)(C \Omega+D)=\Omega-\bar{\Omega}$ by analysis of the 5 -tiple product

$$
\left(\begin{array}{ll}
\bar{\Omega} & 1_{g}
\end{array}\right)\left(\begin{array}{ll}
A^{t} & C^{t} \\
B^{t} & D^{t}
\end{array}\right)\left(\begin{array}{cc}
0_{g} & -1_{g} \\
1_{g} & 0_{g}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\binom{\Omega}{1_{g}} .
$$

b. Deduce from the previous formula that $C \Omega+D$ is invertible.

The group $\mathrm{Sp}_{g}(R)$ acts on H_{g} by the rule $\Omega \mapsto(A \Omega+B)(C \Omega+D)^{-1}$. b.
3) Check of validity of the definition of action:
a. Prove that $(A \Omega+B)(C \Omega+D)^{-1}$ is symmetric.
b. Check the identity

$$
\Im\left((A \Omega+B)(C \Omega+D)^{-1}\right)=\left(\bar{\Omega} C^{t}+D\right)^{-1} \Im(\Omega)(C \Omega+D)^{-1}
$$

Prove that the heft hand side, hence the right hand side, is positive definite.
4)Prove the cocycle condition:

$$
\begin{gathered}
\operatorname{det}\left((A \Omega+B)(C \Omega+D)^{-1}\right)= \\
=\operatorname{det}\left(\left(A_{1}\left(\left(A_{2} \Omega+B_{2}\right)\left(C_{2} \Omega+D\right)^{-1}\right)+B_{1}\right) \times\right. \\
\left.\times\left(C_{1}\left(\left(A_{2} \Omega+B_{2}\right)\left(C_{2} \Omega+D\right)^{-1}\right)+D_{1}\right)^{-1}\right) \operatorname{det}\left(\left(A_{2} \Omega+B_{2}\right)\left(C_{2} \Omega+D\right)^{-1}\right) .
\end{gathered}
$$

where

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right)\left(\begin{array}{ll}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right) .
$$

5)a.Prove that there is a matrix over the ring $Z[2 \cos \phi]$ which is conjugate to the matrix of rotation by angle ϕ.
b.Construct elements in $\mathrm{SL}_{2}(Z)$ of orders 3,4 and 6 . What are their fixed points in the upper half plane?
c). Construct an element in $\mathrm{SL}_{2}(Z[\sqrt{2})$ of order 8 . What are their fixed points in the square of upper half plane?

