Elementary Introduction to the Theory of Automorphic forms Lecture 6

Andrey Levin

NRU HSE Faculty of Mathematics

March 12, 2021

The Structure Theorem for Modular Forms in One Variable.

Remind

 $\Im au > 0. \ q$ denotes $\exp(2\pi i au)$, so 0 < |q| < 1.

Definition

A function $f(\tau)$ on the upper half-plane is called a modular form of the weight k if it is

a) automorphic of the weight k:

$$f((a\tau + b)/(c\tau + d)) = (c\tau + d))^k f(\tau)$$
 for $ad - bc = 1$,

a, b, c, $d \in \mathbb{Z}$, The expression $(c\tau + d)$ is known as automorphic factor;

b) It is holomorphic function at the unit disc as function in q:

Definition

The modular figure is the subset $\overline{\Phi}$ of the upper half-plane defined by inequalities $|\tau|^2 \ge 1, -\frac{1}{2} \le \Re \tau \le \frac{1}{2}$.

Lemma

Any $SL_2(\mathbb{Z})$ -orbit in \mathbb{H} intersect $\overline{\Phi}$.

Proof. The number τ responds to the system of generators of a lattice $L \subset \mathbb{C}$ by the rule $L = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \tau = \omega_1/\omega_2$. The orbit corresponds to the lattice itself. Pick the system of generators as ω_2 be the shortest vector of Land ω_1 be the second in length non-collinear to Ω_2 in controlockwise direction. Evidently $|\tau \geq 1$ and if $\pm \Re \tau > \frac{1}{2}$, $\omega_1 \mp \omega_2$ is shorter that ω_1 . Let Φ^0 denotes the interior of the $\overline{\Phi}$, $\gamma_{\text{vert}} = \{\rho + it, t > 0\}$, $\gamma_{\text{circ}} = \{\exp(2\pi i s), \frac{1}{4} < s < \frac{1}{3}\} \text{ and } \Phi = \Phi^0 \cup \gamma_{\text{vert}} \cup \gamma_{\text{cvrc}}$ Any modular form has finitely many zeros in Φ . Indeed, the exponential function $\exp 2\pi i$ embed Φn in the unit disc. Put $\rho = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. For any holomorphic function f on \mathbb{H} denote by $\nu_{\tau}(f)$ the order of zero of f at τ . For \mathbb{Z} periodic function denote by ν_{∞} the order of the zero at q = 0.

Theorem

Let f be a nonzero modular form of the weight k Then

$$\frac{k}{12} = \sum_{\tau \in \Phi} \nu_{\tau}(f) + \nu_{\infty}(f) + \frac{1}{2}\nu_{i}(f) + \frac{1}{3}\nu_{\rho}(f)$$

A proof is based on the Cauchy's argument principle, we take a contour $\tilde{\gamma}^{\delta}$ which encircle zeroes of f in Φ , then the integral of $d \log f$ over $\tilde{\gamma}^{\delta}$ equals to the sum of orderes of zeros up to factor $2\pi i$. We choose *asdeformationoftheboundaryof* $\overline{\Phi}$ which preserve the following property of this boundary. It is the union of paths γ 's and there images under action of elements of $SL_2(\mathbb{Z})$ with opposite orientation. If the zero of f belongs to γ we replace small neighborhood of this zero in γ by arc outside Φ^0 . Formally:

Put Z be the union of set of all zeros of f in Φ with points i and ρ ; choose $r < \frac{1}{3}|z_{\alpha} - z_{\beta}|$; $z_{\alpha}, z_{\beta} \in Z$ and $M > r + \Im z, z \in Z$. Define two families of paths $\tilde{\gamma}_{vert}^{\delta}$ and $\tilde{\gamma}_{circ}^{\delta}(\delta < r)$. Put $\rho' = \frac{1}{2} + \frac{\sqrt{3}}{2}i$ denote $D_{\rho,\delta} = \{\tau ||\tau - \rho| < \delta\}$, $S_{\rho,\delta}\{\tau ||\tau - \rho| = \delta\}$ and the same for points ρ' and i Consider the set $Z_{vert/circ}$ of zeroes of f on $\gamma_{vert/circ}$. Denote by $D_{vert/circ}$ the union of discs $\bigcup_{z \in Z_{vert/circ}} \{\tau ||\tau - z| < r\}$ and by $S_{vert/circ}$ the union of circles $\bigcup_{z \in Z_{vert/circ}} \{\tau ||\tau - z| = r\}$.

$$ilde{\gamma}^{\delta}_{ ext{vert}} = \left(\gamma_{ ext{vert}} \setminus \left(\mathcal{D}_{ ext{vert}} \cup \mathcal{D}_{
ho,\delta} \cup \{ au | \Im au > \mathcal{M} \}
ight)
ight) \cup \left(\mathcal{S}_{ ext{vert}} \setminus \Phi^0
ight),$$

$$egin{aligned} & ilde{\gamma}^{\delta}_{ ext{circ}} = (\gamma_{ ext{circ}} \setminus (D_{ ext{circ}} \cup D_{
ho,\delta} \cup D_{i,\delta})) \cup \left(S_{ ext{circ}} \setminus \Phi^0
ight), \ & ilde{\gamma}_{\infty} = \{iM + rac{1}{2} - s | 0 \leq s \leq 1\}, ilde{\gamma}^{\delta}_* = S_{*,\delta} \cap \overline{\Phi}, * =
ho,
ho', i. \end{aligned}$$

The chain of paths

$$\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \tilde{\gamma}^{\delta}_{\mathrm{vert}}, \tilde{\gamma}_{\infty}, \left(\tilde{\gamma}^{\delta}_{\mathrm{vert}} \right)^{-1}, \tilde{\gamma}^{\delta}_{\rho}, \left(\tilde{\gamma}^{\delta}_{\mathrm{circ}} \right)^{-1}, \tilde{\gamma}^{\delta}_{i}, \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right) \tilde{\gamma}^{\delta}_{\mathrm{circ}}, \tilde{\gamma}^{\delta}_{\rho'}$$

forms a loop $\tilde{\gamma}^{\delta}$ encircling required zeroes f.

As f is a modular form of the weight k, $f\left(\begin{pmatrix}1&1\\0&1\end{pmatrix}\tau\right) = (0\tau+1)^k f(\tau)$ and contributions of $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \tilde{\gamma}_{\text{vert}}^{\delta}$ and $\left(\tilde{\gamma}_{\text{vert}}^{\delta}\right)^{-1}$ cancel; $f\left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \tau\right) = (1\tau + 0)^k f(\tau)$, hence the restriction of $d \log f$ to $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \tilde{\gamma}_{\text{circ}}^{\delta}$ equals to the restriction $d \log f + k d \log \tau$ to $ilde{\gamma}^{\delta}_{
m circ}$ and contribution of the integrals over these to part is opposite to integral of $d \log f$ over $\tilde{\gamma}_{circ}^{\delta}$. The limit of this integral at $\delta \to 0$ equals to integral of $d \log \tau$ over $\gamma_{\rm circ}$. The last integral equal to $-\frac{2\pi i}{12}$ as $\gamma_{\rm circ}$ is one twelfth of the circle. The lengths of arcs $\tilde{\gamma}^{\delta}_{\rho}$ and $\tilde{\gamma}^{\delta}_{\rho'}$ behave as $\frac{2\pi\delta}{6} + o(\delta)$ and length of $\tilde{\gamma}_i^{\delta}$ is equal to $\pi\delta + o(\delta)$. This produces required prefactors of orders in this points.

For evaluating integral over $\tilde{\gamma}_{\infty}$ apply the exponential map. this path transforms to the cirle around q = 0, hence the integral equals to $-2\pi i\nu_{\infty}(f)$.

Theorem

a) a modular form of zeroth weight is a constant.

b) there are not modular forms of the weight 2.

c) a modular form of the weight k, k = 4, 6, 8, 10 is proportional to the Eisenstein series $e_k(\tau)$ (variant e_4 , e_6 , $e_4^2 e_4 e_6$). d) $e_4(i) \neq 0$, $e_6(\rho) \neq 0$. So, any polynom in e_4 and e_6 , f.e. the

discriminant $\Delta = \frac{1}{1728} \left((60e_4)^3 - (140e_6)^2 \right)$, is not zeroth function.

e) The discriminant Δ has no zeros at $\mathbb H$ and the order of its zero at ∞ equals 1.

Proof a, c is based on subtraction from a mudular form the expectable expression in such way that the difference vanishes at infinity. According to the formula for orders of zeroes this difference should vanishes as k < 12. Other statements follows from this formula immediately.

Lemma

Any natural number $k \ge 14$ equals to sum of 4th and 6th : $k = 4\lambda + 6\mu$, $\lambda, \mu \in \mathbb{Z}$ $\lambda, \mu \ge 0$

Theorem

Any modular form can be expressed in unique way as polynom in e_4 and e_6 with complex coefficients.

Proof. For small weights this is proven in c) of the previous Theorem. Let the weight k of the form is not less that 12 for $k = 4\lambda + 6\mu$ for some constant $C \tilde{f} = f - Ce_4^{\lambda}e_6^{\mu}$ vanishes at infinity and \tilde{f}/Δ is modular form of the weight of k - 12. Induction in the weight. Overview of the Elliptic Functions.

Definition An elliptic function is a function which is 1.holomorphic on the complement to the finite union sets of the shape $\{\eta + +m\tau + n | m, n \in \mathbb{Z}\}$ 2.is double periodic with periods 1, τ 3. all its singularities a poles of finite order.

Theorem Entire elliptic function is a constant.

Definitions-Examples:

$$\wp(\xi;\tau) = \frac{1}{\xi^2} + \sum_{(m,n)\neq(0,0)} \left(\frac{1}{(\xi+m\tau+n)^2} - \frac{1}{(m\tau+n)^2} \right)$$
$$\wp'(\xi;\tau) = \sum_{(m,n)} \frac{-2}{(\xi+m\tau+n)^3}$$

These series absolutely uniformly converge, hence they are elliptic functions and $\wp'(\xi; \tau)$ is the derivative of $\wp(\xi; \tau)$. Near $\xi = 0$

$$\wp(\xi;\tau) = \frac{1}{\xi^2} + \sum_{k=1}^{\infty} (2n+1)e_{2k+2}(\tau)\xi^{2k}$$

The Weirstraß equation

$$\wp'^2 = 4\wp^3 - 60 e_4\wp - 140 e_6$$

Proof. The difference of the lhs and the rhs is elliptic and its value at $\xi = 0$ is zero.

The discriminant of the qubic equation in the rhs up to factor 1278 coincides with $\Delta \wp'$ is odd, so it vanishes at semi-periods $\xi = \frac{\tau+1}{2}, \frac{\tau}{2}, \frac{1}{2}$. As this function has "unique" (up to shifts) pole of the third order, there are no more that three zeroes up to shifts. Hence semi-periods are all zeroes of \wp'' and values of \wp at semi-periods are roots of the equation $4x3 - 60e_4x - 140e_6$. They are mutually different. So $4x3 - 60e_4x - 140e_6 = 4(x - \wp(\frac{\tau+1}{2}))(x - \wp(\frac{\tau}{2}))(x - \wp(\frac{1}{2}))$