Elementary Introduction to the Theory of Automorphic forms
 Lecture 6

Andrey Levin

NRU HSE Faculty of Mathematics
March 12, 2021

The Structure Theorem for Modular Forms in One Variable.

Remind
$\Im \tau>0$. q denotes $\exp (2 \pi i \tau)$, so $0<|q|<1$.
Definition
A function $f(\tau)$ on the upper half-plane is called a modular form of the weight k if it is
a) automorphic of the weight k :
$f((a \tau+b) /(c \tau+d))=(c \tau+d))^{k} f(\tau)$ for $a d-b c=1$,
$a, b, c, d \in \mathbb{Z}$, The expression $(c \tau+d)$ is known as automorphic factor;
b) It is holomorphic function at the unit disc as function in q :

Definition

The modular figure is the subset $\bar{\Phi}$ of the upper half-plane defined by inequalities $|\tau|^{2} \geq 1,-\frac{1}{2} \leq \Re \tau \leq \frac{1}{2}$.

Lemma
Any $\mathrm{SL}_{2}(\mathbb{Z})$-orbit in \mathbb{H} intersect $\bar{\Phi}$.

Proof. The number τ responds to the system of generators of a lattice $L \subset \mathbb{C}$ by the rule $L=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \tau=\omega_{1} / \omega_{2}$. The orbit corresponds to the lattice itself.Pick the system of generators as ω_{2} be the shortest vector of Land ω_{1} be the second in length non-collinear to Ω_{2} in contrclockwise direction. Evidently $\mid \tau \geq 1$ and if $\pm \Re \tau>\frac{1}{2}, \omega_{1} \mp \omega 2$ is shorter that ω_{1}.
Let Φ^{0} denotes the interior of the $\bar{\Phi}, \gamma_{\text {vert }}=\{\rho+i t, t>0\}$, $\gamma_{\text {circ }}=\left\{\exp (2 \pi i s), \frac{1}{4}<s<\frac{1}{3}\right\}$ and $\Phi=\Phi^{0} \cup \gamma_{\text {vert }} \cup \gamma_{\text {cyrc }}$ Any modular form has finitely many zeros in Φ. Indeed, the exponential function $\exp 2 \pi i$ embed Φn in the unit disc.
Put $\rho=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. For any holomorphic function f on \mathbb{H} denote by $\nu_{\tau}(f)$ the order of zero of f at τ. For \mathbb{Z} periodic function denote by ν_{∞} the order of the zero at $q=0$.

Theorem

Let f be a nonzero modular form of the weight k Then

$$
\frac{k}{12}=\sum_{\tau \in \Phi} \nu_{\tau}(f)+\nu_{\infty}(f)+\frac{1}{2} \nu_{i}(f)+\frac{1}{3} \nu_{\rho}(f)
$$

A proof is based on the Cauchy's argument principle, we take a contour $\tilde{\gamma}^{\delta}$ which encircle zeroes of f in Φ, then the integral of $d \log f$ over $\tilde{\gamma}^{\delta}$ equals to the sum of orderes of zeros up to factor $2 \pi i$. We choose ${ }^{\text {a }}$ sdeformationoftheboundaryof $\bar{\Phi}$ which preserve the following property of this boundary. It is the union of paths γ 's and there images under action of elements of $\mathrm{SL}_{2}(\mathbb{Z})$ with opposite orientation. If the zero of f belongs to γ we replace small neighborhood of this zero in γ by arc outside Φ^{0}.
Formally:
Put Z be the union of set of all zeros of f in Φ with points i and ρ; choose $r<\frac{1}{3}\left|z_{\alpha}-z_{\beta}\right| ; z_{\alpha}, z_{\beta} \in Z$ and $M>r+\Im z, z \in Z$. Define two families of paths $\tilde{\gamma}_{\text {vert }}^{\delta}$ and $\tilde{\gamma}_{\text {circ }}^{\delta}(\delta<r)$.Put $\rho^{\prime}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$ denote $D_{\rho, \delta}=\{\tau \| \tau-\rho \mid<\delta\}, S_{\rho, \delta}\{\tau \| \tau-\rho \mid=\delta\}$ and the same for points ρ^{\prime} and i Consider the set $Z_{\text {vert } / \text { circ }}$ of zeroes of f on $\gamma_{\text {vert } / \text { circ }}$. Denote by $D_{\text {vert } / \mathrm{circ}}$ the union of discs $\bigcup_{z \in Z_{\text {vert } / \mathrm{circ}}}\{\tau \| \tau-z \mid<r\}$ and by $S_{\text {vert/circ }}$ the union of circles $\bigcup_{z \in Z_{\text {vert/circ }}}\{\tau \| \tau-z \mid=r\}$.

Put

$$
\begin{gathered}
\tilde{\gamma}_{\text {vert }}^{\delta}=\left(\gamma_{\text {vert }} \backslash\left(D_{\text {vert }} \cup D_{\rho, \delta} \cup\{\tau \mid \Im \tau>M\}\right)\right) \cup\left(S_{\text {vert }} \backslash \Phi^{0}\right), \\
\tilde{\gamma}_{\text {circ }}^{\delta}=\left(\gamma_{\text {circ }} \backslash\left(D_{\text {circ }} \cup D_{\rho, \delta} \cup D_{i, \delta}\right)\right) \cup\left(S_{\mathrm{circ}} \backslash \Phi^{0}\right), \\
\tilde{\gamma}_{\infty}=\left\{\left.i M+\frac{1}{2}-s \right\rvert\, 0 \leq s \leq 1\right\}, \tilde{\gamma}_{*}^{\delta}=S_{*, \delta} \cap \bar{\Phi}, *=\rho, \rho^{\prime}, i
\end{gathered}
$$

The chain of paths

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \tilde{\gamma}_{\mathrm{vert}}^{\delta}, \tilde{\gamma}_{\infty},\left(\tilde{\gamma}_{\mathrm{vert}}^{\delta}\right)^{-1}, \tilde{\gamma}_{\rho}^{\delta},\left(\tilde{\gamma}_{\mathrm{circ}}^{\delta}\right)^{-1}, \tilde{\gamma}_{i}^{\delta},\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \tilde{\gamma}_{\mathrm{circ}}^{\delta}, \tilde{\gamma}_{\rho^{\prime}}^{\delta}
$$

forms a loop $\tilde{\gamma}^{\delta}$ encircling required zeroes f.

As f is a modular form of the weight k,
$f\left(\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \tau\right)=(0 \tau+1)^{k} f(\tau)$ and contributions of
$\left(\begin{array}{cc}1 & 1 \\ 0 & 1\end{array}\right) \tilde{\gamma}_{\text {vert }}^{\delta}$ and $\left(\tilde{\gamma}_{\text {vert }}^{\delta}\right)^{-1}$ cancel;
$f\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \tau\right)=(1 \tau+0)^{k} f(\tau)$, hence the restriction of $d \log f$
to $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \tilde{\gamma}_{\text {circ }}^{\delta}$ equals to the restriction $d \log f+k d \log \tau$ to
$\tilde{\gamma}_{\text {circ }}^{\delta}$ and contribution of the integrals over these to part is opposite to integral of $d \log f$ over $\tilde{\gamma}_{\text {circ }}^{\delta}$. The limit of this integral at $\delta \rightarrow 0$ equals to integral of $d \log \tau$ over $\gamma_{\text {circ }}$. The last integral equal to $-\frac{2 \pi i}{12}$ as $\gamma_{\text {circ }}$ is one twelfth of the circle.
The lengths of arcs $\tilde{\gamma}_{\rho}^{\delta}$ and $\tilde{\gamma}_{\rho^{\prime}}^{\delta}$ behave as $\frac{2 \pi \delta}{6}+o(\delta)$ and length of $\tilde{\gamma}_{i}^{\delta}$ is equal to $\pi \delta+o(\delta)$. This produces required prefactors of orders in this points.
For evaluating integral over $\tilde{\gamma}_{\infty}$ apply the exponential map. this path transforms to the cirle around $q=0$, hence the integral equals to $-2 \pi i \nu_{\infty}(f)$.

Theorem

a) a modular form of zeroth weight is a constant.
b) there are not modular forms of the weight 2 .
c) a modular form of the weight $k, k=4,6,8,10$ is proportional to the Eisenstein series $e_{k}(\tau)$ (variant $e_{4}, e_{6}, e_{4}^{2} e_{4} e_{6}$).
d) $e_{4}(i) \neq 0, e_{6}(\rho) \neq 0$. So, any polynom in e_{4} and e_{6}, f.e. the discriminant $\Delta=\frac{1}{1728}\left(\left(60 e_{4}\right)^{3}-\left(140 e_{6}\right)^{2}\right)$, is not zeroth function.
e) The discriminant Δ has no zeros at \mathbb{H} and the order of its zero at ∞ equals 1 .
Proof a, c is based on subtraction from a mudular form the expectable expression in such way that the difference vanishes at infinity. According to the formula for orders of zeroes this difference should vanishes as $k<12$. Other statements follows from this formula immediately.

Lemma

Any natural number $k \geq 14$ equals to sum of 4 th and 6 th :
$k=4 \lambda+6 \mu, \lambda, \mu \in \mathbb{Z} \lambda, \mu \geq 0$

Theorem

Any modular form can be expressed in unique way as polynom in e_{4} and e_{6} with complex coefficients.
Proof. For small weights this is proven in c) of the previous Theorem. Let the weight k of the form is not less that 12 for $k=4 \lambda+6 \mu$ for some constant $C \tilde{f}=f-C e_{4}^{\lambda} e_{6}^{\mu}$ vanishes at infinity and \tilde{f} / Δ is modular form of the weight of $k-12$. Induction in the weight.

Overview of the Elliptic Functions.

Definition

An elliptic function is a function which is
1.holomorphic on the complement to the finite union sets of the shape $\{\eta++m \tau+n \mid m, n \in \mathbb{Z}\}$
2.is double periodic with periods $1, \tau$
3. all its singularities a poles of finite order.

Theorem
Entire elliptic function is a constant.
Definitions-Examples:

$$
\begin{gathered}
\wp(\xi ; \tau)=\frac{1}{\xi^{2}}+\sum_{(m, n) \neq(0,0)}\left(\frac{1}{(\xi+m \tau+n)^{2}}-\frac{1}{(m \tau+n)^{2}}\right) \\
\wp^{\prime}(\xi ; \tau)=\sum_{(m, n)} \frac{-2}{(\xi+m \tau+n)^{3}}
\end{gathered}
$$

These series absolutely uniformly converge, hence they are elliptic functions and $\wp^{\prime}(\xi ; \tau)$ is the derivative of $\wp(\xi ; \tau)$.
Near $\xi=0$

$$
\wp(\xi ; \tau)=\frac{1}{\xi^{2}}+\sum_{k=1}^{\infty}(2 n+1) e_{2 k+2}(\tau) \xi^{2 k}
$$

The Weirstraß equation

$$
\wp^{\prime 2}=4 \wp^{3}-60 e_{4} \wp-140 e_{6}
$$

Proof. The difference of the lhs and the rhs is elliptic and its value at $\xi=0$ is zero.
The discriminant of the qubic equation in the rhs up to factor 1278 coincides with $\Delta \wp^{\prime}$ is odd, so it vanishes at semi-periods $\xi=\frac{\tau+1}{2}, \frac{\tau}{2}, \frac{1}{2}$. As this function has "unique" (up to shifts) pole of the third order, there are no more that three zeroes up to shifts.
Hence semi-periods are all zeroes of \wp " and values of \wp at semi-periods are roots of the equation $4 \times 3-60 e_{4} x-140 e_{6}$. They are mutually different. So
$4 \times 3-60 e_{4} x-140 e_{6}=4\left(x-\wp\left(\frac{\tau+1}{2}\right)\right)\left(x-\wp\left(\frac{\tau}{2}\right)\right)\left(x-\wp\left(\frac{1}{2}\right)\right)$

