Elementary Introduction to the Theory of
 Automorphic forms Lecture8+HW3

Andrey Levin
NRU HSE Faculty of Mathematics

$$
\text { April 7, } 2021
$$

There are four problems of HW. They are marked by !!!! send solutions to alevin57@gmail.com until 21.04

Another $\theta \mathrm{s}$

I present more theta functions, which I will use later.

$$
\theta_{00}(\xi ; \tau)=\sum_{k \in \mathbb{Z}} \exp \left(2 \pi i\left(\frac{k^{2}}{2} \tau+k \xi\right)\right)
$$

Easily $\theta_{00}\left(\xi+\frac{\tau}{2}+\frac{1}{2} ; \tau\right)=\exp \left(-2 \pi i\left(\frac{1}{8} \tau+\frac{1}{2}\left(\xi+\frac{1}{2}\right)\right)\right) \theta_{11}(\xi ; \tau)$. Note that the quasiperiodicity of θ can be reinterpret in the following way: For integer m, n put

$$
T_{m, n}(f(\xi ; \tau))=\exp \left(2 \pi i\left(\frac{m^{2}}{2} \tau+m(\xi+n)\right)\right) f(\xi+m \tau+n ; \tau)
$$

. Then $T_{m, n}\left(\theta_{11}(\xi ; \tau)\right)=(-1)^{(m+n} \theta_{11}(\xi ; \tau)$ and
$T_{m, n}\left(\theta_{00}(\xi ; \tau)\right)=\theta_{00}(\xi ; \tau)$.
One can interpolate the operator $T_{* *}$ to the rational indices, then $\theta_{11}(\xi ; \tau)=T_{\frac{1}{2}, \frac{1}{2}} \theta_{00}(\xi ; \tau)$. For any pair $\alpha, \beta, \alpha, \beta$ are either 0 or 1 put $\theta_{\alpha \beta}(\xi ; \tau) \stackrel{(1)}{=} T_{\frac{\alpha}{2}, \frac{\beta}{2}} \theta_{00}(\xi ; \tau)$. For more details see Mumford.

The θ-functions and the Elliptic Functions.

Temporarily for short hands we omit indices 11 and variable τ in notations, so $\theta(\xi)$ denotes $\theta_{11}(\xi ; \tau), \theta^{\prime}(0)$ denotes $\partial \theta_{11}(\xi ; \tau) /\left.\partial \xi\right|_{\xi=0}$ and $\wp(\xi)$ denotes $\wp(\xi ; \tau)$.
Lemma

$$
\wp(\xi)-\wp(\eta)=\frac{\theta^{\prime}(0)^{2} \theta(\xi+\eta) \theta(\eta-\xi)}{\theta(\xi)^{2} \theta(\eta)^{2}}
$$

Proof HW1!!! the idea is the following:
first check for $\eta \neq m \tau+n, m, n \in \mathbb{Z}$ that the rhs is elliptic in ξ; second check for $\eta \neq m \tau+n, m, n \in \mathbb{Z}$ that the ratio of Ihs and the rhs is regular everywhere (for this use information about zeros of the θ-function), hence does not depend in ξ; third calculate this constant by tending to 0 .

$$
\wp^{\prime}(\xi)=-2 \frac{\theta^{\prime}(0)^{3} \theta\left(\xi+\frac{1}{2}\right) \theta\left(\xi+\frac{\tau}{2}\right) \theta\left(\xi-\frac{1}{2}-\frac{\tau}{2}\right)}{\theta(\xi)^{3} \theta\left(\frac{1}{2}\right) \theta\left(\frac{\tau}{2}\right) \theta\left(-\frac{1}{2}-\frac{\tau}{2}\right)}
$$

Proof HW2 !!!

The factor $\frac{\theta^{\prime}(0)^{3}}{\theta\left(\frac{1}{2}\right) \theta\left(\frac{\tau}{2}\right) \theta\left(-\frac{1}{2}-\frac{\tau}{2}\right)}$ can be recalculated.
The expressions $\wp\left(\frac{1}{2}\right), \wp\left(\frac{\tau}{2}\right)$ and $\wp\left(-\frac{1}{2}-\frac{\tau}{2}\right)$ are roots of the cubic equation $4 x^{3}-60 e_{4} x-140 e_{6}=0$ The discriminant of this equation equals to

$$
\begin{gathered}
\left(\left(\wp\left(\frac{1}{2}\right)-\wp\left(\frac{\tau}{2}\right)\right)\left(\wp\left(-\frac{1}{2}-\frac{\tau}{2}\right)-\wp\left(\frac{1}{2}\right)\right)\left(\wp\left(\frac{\tau}{2}\right)-\wp\left(-\frac{1}{2}-\frac{\tau}{2}\right)\right)\right)^{2}= \\
\left(\frac{\theta^{\prime}(0)^{2} \theta\left(\frac{1}{2}+\frac{\tau}{2}\right) \theta\left(\frac{1}{2}-\frac{\tau}{2}\right)}{\theta\left(\frac{1}{2}\right)^{2} \theta\left(\frac{\tau}{2}\right)^{2}}\right)^{2} \times \cdots
\end{gathered}
$$

and is a modular form as polynomial in e_{4} and e_{6}.

Lemma
$\left(\frac{\theta\left(\frac{1}{2}+\frac{\tau}{2}\right) \theta\left(\frac{1}{2}-\frac{\tau}{2}\right)}{\theta\left(\frac{1}{2}\right)^{2} \theta\left(\frac{\tau}{2}\right)^{2}}\right)^{2} \times \cdots=\left(\theta_{00}(0) \theta_{01}(0)^{2} \theta_{10}(0)^{2}\right)^{-2}$
Proof HW 3 !!!!!
Lemma
$\theta_{11}^{\prime}(0)=-\pi \theta_{00}(0) \theta_{01}(0) \theta_{10}(0)$
Proof HW 4!!! the idea is the following first, according to previous speculations, $\theta_{11}^{\prime}(0)^{12}\left(00(0)^{2} \theta_{01}(0)^{2} \theta_{10}(0)^{2}\right)^{-2}$ is a modular form of the weight 12 and it vanishes at $\tau=i \infty$;
second, according to previous lecture, $\theta_{11}^{\prime}(0)^{8}$ also satisfies these conditions:
third, from consideration of zeroes of modular forms conclude that these forms are proportional; forth, we have proved that $\theta_{11}^{\prime}(0)=K \theta_{00}(0) \theta_{01}(0) \theta_{10}(0)$ for some constant K. This constant can be evaluated by $\tau \rightarrow i \infty$

Infinite products

Lemma

$$
\theta_{11}(\xi ; \tau)=i \exp \left(2 \pi i \frac{\tau}{8}\right)\left(\exp \left(2 \pi i \frac{\xi}{2}\right)-\exp \left(-2 \pi i \frac{\xi}{2}\right)\right) \times
$$

$$
\times \prod_{j=1}^{\infty}(1-\exp (2 \pi i(\xi+j \tau))(1-\exp (2 \pi i(-\xi+j \tau))(1-\exp (2 \pi i(\xi+j \tau))
$$

and analogous for other $\theta_{\alpha \beta}$.
Proof HW 4 !!!! Idea of the prove:
first, as above, prove that the ratio of the lhs and the rhs does no depends in ξ
second, the substitution
$\theta_{11}(\xi ; \tau)=K i \exp \left(2 \pi i \frac{\tau}{8}\right)\left(\exp \left(2 \pi i \frac{\xi}{2}\right)-\exp \left(-2 \pi i \frac{\xi}{2}\right)\right) \cdots$ to
$\theta_{11}^{\prime}(0)=-\pi \theta_{00}(0)^{2} \theta_{01}(0) \theta_{10}(0)$ get $K^{2}=1$, for this use equality
$\prod_{j=1}^{\infty}(1-\exp ((2 j-1) a)(1+\exp ((2 j-1) a)(1+\exp (2 j a))=1$
The last can be proved by multiplication by $\prod_{j=1}^{\infty}(1-\exp (2 j a))$

