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Modular Functions

Definition
A holomorphic function f on the upper half-plane is called modular
function if
a)it is invariant with respect to the fraction-linear action of SL2(Z).
b)it has finite order pole at 0 as function in q = exp(2πiτ):
f (τ) =

∑∞
k=−N ak exp(2πikτ).

Example. The ratio

j =
(60e4)3

∆
= q−1 + 744 + 196884q + O(q2)

of two modular forms of weight 12 is modular function. The
q-coefficients ak of this function are integer.



Lemma
Any modular function is a polynomial in the function j .
Proof. Regular at q = 0 modular function is modular form of the
weight 0, hence is a constant.
If modular function f (τ) =

∑∞
k=−N akq

k has pole at q = 0 of order
N, then the order of the pole of (f − a−N j

N) is less that N.
Induction in N.
Remark. If coefficients ak of modular function f (τ) =

∑∞
k=−N akq

k

are integer, f is polynomial in j with integer coefficients.

Proposition
j(τ1) = j(2) iff τ1 and τ2 belong to the same SL2(Z)-orbit.
A proof follows from the formula∑

τ∈Φ

ντ (f ) + ν∞(f ) +
1
2
νi (f ) +

1
3
νρ(f ) = 0

for function f (τ) = j(τ)− j(τ1).



Some Number Theory.Kronecker’s Liebste Jugendtroum.

Proposition
Let τ be an imaginary quadratic irrationality of the shape
m+
√
D

2l ,D ≡ 0, 1mod4,D < 0, m2 ≡ Dmod4l . Then j(τ) is
algebraic integer number.
Proof. Such a τ is a solution of quadratic equation
cτ2 + (d − a)τ − b = 0 for c = l , a = d + m, b = (D −m2)/(4l).
The last is just equation τ = aτ+b

cτ+d , so τ is a fixed point of action

of
(

a b
c d

)
Pick a = −d = m/2 for even D and a = (m + 1)/2,

d = (−m + 1)/2 for odd D. Then the deteminants of these
matrices are equal to −D

4 and −D−1
4 respectively.



We shall prove that j(τ) is a root of some polynomial with integer
coefficient(and leading coefficient 1). We perform this by the
following trick. We prove that for matrices M with fixed
determinant N the functions j(τ) and j(M(τ)) are algebraically
dependent with integer coefficients. The restriction of this
dependence to a fixed point produces the required polynomial.
Definitely the set {M(τ} is infinite, but j(M(τ)) depends in the
SL2(Z)-orbit only. Denote by MatN the set of all 2× 2 integer
matrices with determinant N. The group SL2(Z) acts by left
multiplication with finite number of orbits:

Lemma

MatN =
⋃

ad = N,
0 ≤ b < d

SL2(Z)

(
a b
0 d

)

So, all values j(M(τ)) are the finite set j(aτ+b
d ),

ad = N, 0 ≤ b < d .



The are roots of the polynomial

ΛN(X ) =
∏

ad = N,
0 ≤ b < d

(
X − j(

aτ + b

d
)

)

The coefficients of this polynomial are the elementary symmetric
polynomials in j(aτ+b

d ).
First we prove that elementary symmetric polynomials in j(aτ+b

d )
are polynomials in j(τ) with rational coefficients.
As M(γ(τ)) = M(γ)(τ), the induced by τ → γ(τ) action of
SL2(Z) on the set {j(M(τ))} reduces to right action action of
SL2(Z) on MatN . This right action commutes with the left action,
so permutes left orbits. Hence, symmetric functions in {j(M(τ))}
are modular invariant.



Pass to the q-expansions. Tt is easier to operate with the Newton
symmetric functions pl(x1, · · · , xn) = xk1 + · · ·+ xkn , as they are
just averaging of the powers of the variable; for averaging of power
series

∑
k ak exp(2πikτ) we evidently have∑

0≤b<d

∑
k

ak exp

(
2πik

aτ + b

d

)
=
∑
j

dadj exp (2πijaτ) ,

as for k not divisible by d∑
0≤b<d

exp

(
2πik

b

d

)
= 0,

and for divisible k this sum equals d .
So, the Newton symmetric functions of j(aτ+b

d ) have required
q-expansion and are polynomials in j(τ) with integer coefficients.



The elementary symmetric functions are polynomials in the Newton
functions with rational coefficients, hence are series in exp(2πiτ)
with rational coefficients. At the other hand, just by definition they
are series in exp

(
2πi τN

)
with coefficients in Z

[
exp

(2πi
N

)]
. So they

are series in exp(2πiτ) with integer coefficients. Hence ΛN(X )
equals ΨN(X , j(τ)) where ΨN(X ,Y ) is a polynomial with integer
coefficients. For calculation we can use the following trick.
As j = q−1 +

∑∞
k=0 akq

k , j−1 = q +
∑∞

k=2 bkq
k , one can invert

this relation: q = j−1 +
∑∞

k=2 rk j
−k . Then

j−1 = q +
∑∞

k=0 bkq
k .ΨN(X , j(τ)) is the result of the substitution

this expression of q into ΛN(X ). Such ΨN(X ,Y ) is a priori a
polynomial in X and a Laurent series in Y−1.
The values of j , which we study, are roots of the polynomial
ΨN(X ,X ). We shall evaluate the coefficient of the leading term of
this polynomial.
For fixed a and d consider the product

Λa,d(X ) =
∏

0≤b<d

(
X − j

(
aτ + b

d

))



As above, Λa,d(X ) is equal to Ψa,d(X , j(τ)), where Ψa,d(X ,Y ) is a
polynomial in X and a Laurent series in Y−1

Λa,d(X ) =
∏

0≤b<d

((
X − exp(−2πi aτ + b

d
)

)
+ φa

)
=

=
∏

0≤b<d

(
X − exp(−2πi aτ + b

d
)

)
+
∑
α

gαX
α,

where φa(τ) corresponds to the sum of the regular terms in
expansion of j ; gα(τ) is the sum of the products which contains at
least one φa as a factor. So, the degree of φa in exp(−aτ

d ) is less
than d − α.∏

0≤b<d

(
X − exp(−aτ+b

d )
)

= X d −
(
exp

(
−aτ

d

))d
= X d − q−a.



Restrict ourselves by the case then N is not square, so either a > d
or a < d
for a > d the degree of gα in exp(−2πiτ) is less then (d − α) a

d . so
the degree corespondent contribution to
For a < d we apply the following speculation. The polynomial Ψ is
symmetric: Ψ(X ,Y ) = Ψ(Y ,X ).. Indeed, If
τ1 = (aτ2 + b)/(cτ2 + d), then τ2 = (dτ1− b)/(−cτ1 + a). The
symmetry interchanges a and d , hence ψa,d is a Laurent series in Y
of total degree less that d for d > a.
We have proved that the "auxiliary" terms gα does not contribute
to the leading term, So the leading term of
Ψn(X ,X ) =

∏
ad=N Ψa,d(X ,X ) equals ±1


