Elementary Introduction to the Theory of Automorphic forms Lecture9

Andrey Levin

NRU HSE Faculty of Mathematics

April 16, 2021

Modular Functions

Definition

A holomorphic function f on the upper half-plane is called modular function if
a)it is invariant with respect to the fraction-linear action of $\mathrm{SL}_{2}(\mathbb{Z})$.
b)it has finite order pole at 0 as function in $q=\exp (2 \pi i \tau)$:
$f(\tau)=\sum_{k=-N}^{\infty} a_{k} \exp (2 \pi i k \tau)$.
Example. The ratio

$$
j=\frac{\left(60 e_{4}\right)^{3}}{\Delta}=q^{-1}+744+196884 q+O\left(q^{2}\right)
$$

of two modular forms of weight 12 is modular function. The q-coefficients a_{k} of this function are integer.

Lemma

Any modular function is a polynomial in the function j.
Proof. Regular at $q=0$ modular function is modular form of the weight 0 , hence is a constant.
If modular function $f(\tau)=\sum_{k=-N}^{\infty} a_{k} q^{k}$ has pole at $q=0$ of order N, then the order of the pole of $\left(f-a_{-N} j^{N}\right)$ is less that N. Induction in N.
Remark. If coefficients a_{k} of modular function $f(\tau)=\sum_{k=-N}^{\infty} a_{k} q^{k}$ are integer, f is polynomial in j with integer coefficients.

Proposition

$j\left(\tau_{1}\right)=j(2)$ iff τ_{1} and τ_{2} belong to the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit.
A proof follows from the formula

$$
\sum_{\tau \in \Phi} \nu_{\tau}(f)+\nu_{\infty}(f)+\frac{1}{2} \nu_{i}(f)+\frac{1}{3} \nu_{\rho}(f)=0
$$

for function $f(\tau)=j(\tau)-j\left(\tau_{1}\right)$.

Some Number Theory.Kronecker's Liebste Jugendtroum.

Proposition

Let τ be an imaginary quadratic irrationality of the shape $\frac{m+\sqrt{D}}{2 l}, D \equiv 0,1 \bmod 4, D<0, m^{2} \equiv D \bmod 4 l$. Then $j(\tau)$ is algebraic integer number.
Proof. Such a τ is a solution of quadratic equation $c \tau^{2}+(d-a) \tau-b=0$ for $c=l, a=d+m, b=\left(D-m^{2}\right) /(4 /)$. The last is just equation $\tau=\frac{a \tau+b}{c \tau+d}$, so τ is a fixed point of action of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ Pick $a=-d=m / 2$ for even D and $a=(m+1) / 2$, $d=(-m+1) / 2$ for odd D. Then the deteminants of these matrices are equal to $-\frac{D}{4}$ and $-\frac{D-1}{4}$ respectively.

We shall prove that $j(\tau)$ is a root of some polynomial with integer coefficient(and leading coefficient 1). We perform this by the following trick. We prove that for matrices M with fixed determinant N the functions $j(\tau)$ and $j(M(\tau))$ are algebraically dependent with integer coefficients. The restriction of this dependence to a fixed point produces the required polynomial. Definitely the set $\{M(\tau\}$ is infinite, but $j(M(\tau))$ depends in the $\mathrm{SL}_{2}(\mathbb{Z})$-orbit only. Denote by Mat ${ }^{N}$ the set of all 2×2 integer matrices with determinant N. The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts by left multiplication with finite number of orbits:

Lemma

$$
\operatorname{Mat}^{N}=\bigcup_{\substack{a d=N, 0 \leq b<d}} \mathrm{SL}_{2}(\mathbb{Z})\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right)
$$

So, all values $j(M(\tau))$ are the finite set $j\left(\frac{a \tau+b}{d}\right)$, $a d=N, 0 \leq b<d$.

The are roots of the polynomial

$$
\Lambda_{N}(X)=\prod_{\substack{a d=N, 0 \leq b<d}}\left(X-j\left(\frac{a \tau+b}{d}\right)\right)
$$

The coefficients of this polynomial are the elementary symmetric polynomials in $j\left(\frac{a \tau+b}{d}\right)$.
First we prove that elementary symmetric polynomials in $j\left(\frac{a \tau+b}{d}\right)$ are polynomials in $j(\tau)$ with rational coefficients. As $M(\gamma(\tau))=M(\gamma)(\tau)$, the induced by $\tau \rightarrow \gamma(\tau)$ action of $\mathrm{SL}_{2}(\mathbb{Z})$ on the set $\{j(M(\tau))\}$ reduces to right action action of $\mathrm{SL}_{2}(\mathbb{Z})$ on Mat ${ }^{N}$. This right action commutes with the left action, so permutes left orbits. Hence, symmetric functions in $\{j(M(\tau))\}$ are modular invariant.

Pass to the q-expansions. Tt is easier to operate with the Newton symmetric functions $p_{l}\left(x_{1}, \cdots, x_{n}\right)=x_{1}^{k}+\cdots+x_{n}^{k}$, as they are just averaging of the powers of the variable; for averaging of power series $\sum_{k} a_{k} \exp (2 \pi i k \tau)$ we evidently have

$$
\sum_{0 \leq b<d} \sum_{k} a_{k} \exp \left(2 \pi i k \frac{a \tau+b}{d}\right)=\sum_{j} d a_{d j} \exp (2 \pi i j a \tau)
$$

as for k not divisible by d

$$
\sum_{0 \leq b<d} \exp \left(2 \pi i k \frac{b}{d}\right)=0
$$

and for divisible k this sum equals d.
So, the Newton symmetric functions of $j\left(\frac{a \tau+b}{d}\right)$ have required q-expansion and are polynomials in $j(\tau)$ with integer coefficients.

The elementary symmetric functions are polynomials in the Newton functions with rational coefficients, hence are series in $\exp (2 \pi i \tau)$ with rational coefficients. At the other hand, just by definition they are series in $\exp \left(2 \pi i \frac{\tau}{N}\right)$ with coefficients in $\mathbb{Z}\left[\exp \left(\frac{2 \pi i}{N}\right)\right]$. So they are series in $\exp (2 \pi i \tau)$ with integer coefficients. Hence $\Lambda_{N}(X)$ equals $\Psi_{N}(X, j(\tau))$ where $\Psi_{N}(X, Y)$ is a polynomial with integer coefficients. For calculation we can use the following trick. As $j=q^{-1}+\sum_{k=0}^{\infty} a_{k} q^{k}, j^{-1}=q+\sum_{k=2}^{\infty} b_{k} q^{k}$, one can invert this relation: $q=j^{-1}+\sum_{k=2}^{\infty} r_{k} j^{-k}$. Then
$j^{-1}=q+\sum_{k=0}^{\infty} b_{k} q^{k} . \Psi_{N}(X, j(\tau))$ is the result of the substitution this expression of q into $\Lambda_{N}(X)$. Such $\Psi_{N}(X, Y)$ is a priori a polynomial in X and a Laurent series in Y^{-1}.
The values of j, which we study, are roots of the polynomial $\Psi_{N}(X, X)$. We shall evaluate the coefficient of the leading term of this polynomial.
For fixed a and d consider the product

$$
\Lambda_{a, d}(X)=\prod_{0 \leq b<d}\left(X-j\left(\frac{a \tau+b}{d}\right)\right)
$$

As above, $\Lambda_{a, d}(X)$ is equal to $\Psi_{a, d}(X, j(\tau))$, where $\Psi_{a, d}(X, Y)$ is a polynomial in X and a Laurent series in Y^{-1}

$$
\begin{gathered}
\Lambda_{a, d}(X)=\prod_{0 \leq b<d}\left(\left(X-\exp \left(-2 \pi i \frac{a \tau+b}{d}\right)\right)+\phi_{a}\right)= \\
=\prod_{0 \leq b<d}\left(X-\exp \left(-2 \pi i \frac{a \tau+b}{d}\right)\right)+\sum_{\alpha} g_{\alpha} X^{\alpha}
\end{gathered}
$$

where $\phi_{a}(\tau)$ corresponds to the sum of the regular terms in expansion of $j ; g_{\alpha}(\tau)$ is the sum of the products which contains at least one ϕ_{a} as a factor. So, the degree of ϕ_{a} in $\exp \left(-\frac{a \tau}{d}\right)$ is less than $d-\alpha$.
$\prod_{0 \leq b<d}\left(X-\exp \left(-\frac{a \tau+b}{d}\right)\right)=X^{d}-\left(\exp \left(-\frac{a \tau}{d}\right)\right)^{d}=X^{d}-q^{-a}$.

Restrict ourselves by the case then N is not square, so either $a>d$ or $a<d$
for $a>d$ the degree of g_{α} in $\exp (-2 \pi i \tau)$ is less then $(d-\alpha) \frac{a}{d}$. so the degree corespondent contribution to
For $a<d$ we apply the following speculation. The polynomial Ψ is symmetric: $\Psi(X, Y)=\Psi(Y, X)$.. Indeed, If $\tau_{1}=\left(a \tau_{2}+b\right) /\left(c \tau_{2}+d\right)$, then $\tau_{2}=(d \tau 1-b) /\left(-c \tau_{1}+a\right)$. The symmetry interchanges a and d, hence $\psi_{a, d}$ is a Laurent series in Y of total degree less that d for $d>a$.
We have proved that the "auxiliary" terms g_{α} does not contribute to the leading term, So the leading term of
$\Psi_{n}(X, X)=\prod_{a d=N} \Psi_{a, d}(X, X)$ equals ± 1

