Elementary Introduction to the Theory of Automorphic forms Lecture9

Andrey Levin

NRU HSE Faculty of Mathematics

April 16, 2021

Modular Functions

Definition

A holomorphic function f on the upper half-plane is called modular function if

a)it is invariant with respect to the fraction-linear action of $SL_2(\mathbb{Z})$. b)it has finite order pole at 0 as function in $q = \exp(2\pi i \tau)$: $f(\tau) = \sum_{k=-N}^{\infty} a_k \exp(2\pi i k \tau)$.

Example. The ratio

$$j = \frac{(60e_4)^3}{\Delta} = q^{-1} + 744 + 196884q + O(q^2)$$

of two modular forms of weight 12 is modular function. The q-coefficients a_k of this function are integer.

Lemma

Any modular function is a polynomial in the function j.

Proof. Regular at q = 0 modular function is modular form of the weight 0, hence is a constant.

If modular function $f(\tau) = \sum_{k=-N}^{\infty} a_k q^k$ has pole at q = 0 of order N, then the order of the pole of $(f - a_{-N}j^N)$ is less that N. Induction in N.

Remark. If coefficients a_k of modular function $f(\tau) = \sum_{k=-N}^{\infty} a_k q^k$ are integer, f is polynomial in j with integer coefficients.

Proposition

 $j(\tau_1) = j(2)$ iff τ_1 and τ_2 belong to the same $SL_2(\mathbb{Z})$ -orbit. A proof follows from the formula

$$\sum_{\tau \in \Phi} \nu_{\tau}(f) + \nu_{\infty}(f) + \frac{1}{2}\nu_{i}(f) + \frac{1}{3}\nu_{\rho}(f) = 0$$

for function $f(\tau) = j(\tau) - j(\tau_1)$.

Some Number Theory.Kronecker's Liebste Jugendtroum.

Proposition

Let τ be an imaginary quadratic irrationality of the shape $\frac{m+\sqrt{D}}{2l}$, $D \equiv 0, 1 \mod 4, D < 0, m^2 \equiv D \mod 4l$. Then $j(\tau)$ is algebraic integer number.

Proof. Such a τ is a solution of quadratic equation $c\tau^2 + (d-a)\tau - b = 0$ for c = I, a = d + m, $b = (D - m^2)/(4I)$. The last is just equation $\tau = \frac{a\tau+b}{c\tau+d}$, so τ is a fixed point of action of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ Pick a = -d = m/2 for even D and a = (m+1)/2, d = (-m+1)/2 for odd D. Then the deteminants of these matrices are equal to $-\frac{D}{4}$ and $-\frac{D-1}{4}$ respectively. We shall prove that $j(\tau)$ is a root of some polynomial with integer coefficient(and leading coefficient 1). We perform this by the following trick. We prove that for matrices M with fixed determinant N the functions $j(\tau)$ and $j(M(\tau))$ are algebraically dependent with integer coefficients. The restriction of this dependence to a fixed point produces the required polynomial. Definitely the set $\{M(\tau)\}$ is infinite, but $j(M(\tau))$ depends in the $SL_2(\mathbb{Z})$ -orbit only. Denote by Mat^N the set of all 2×2 integer matrices with determinant N. The group $SL_2(\mathbb{Z})$ acts by left multiplication with finite number of orbits:

Lemma

$$\operatorname{Mat}^{N} = \bigcup_{\substack{ad = N, \\ 0 \leq b < d}} \operatorname{SL}_{2}(\mathbb{Z}) \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$$

So, all values $j(M(\tau))$ are the finite set $j(\frac{a\tau+b}{d})$, $ad = N, 0 \le b < d$.

The are roots of the polynomial

$$\Lambda_N(X) = \prod_{\substack{ad = N, \\ 0 \le b < d}} \left(X - j(\frac{a\tau + b}{d}) \right)$$

The coefficients of this polynomial are the elementary symmetric polynomials in $j(\frac{a\tau+b}{d})$. First we prove that elementary symmetric polynomials in $j(\frac{a\tau+b}{d})$ are polynomials in $j(\tau)$ with rational coefficients. As $M(\gamma(\tau)) = M(\gamma)(\tau)$, the induced by $\tau \to \gamma(\tau)$ action of $SL_2(\mathbb{Z})$ on the set $\{j(M(\tau))\}$ reduces to right action action of $SL_2(\mathbb{Z})$ on Mat^N . This right action commutes with the left action, so permutes left orbits. Hence, symmetric functions in $\{j(M(\tau))\}$ are modular invariant. Pass to the *q*-expansions. Tt is easier to operate with the Newton symmetric functions $p_l(x_1, \dots, x_n) = x_1^k + \dots + x_n^k$, as they are just averaging of the powers of the variable; for averaging of power series $\sum_k a_k \exp(2\pi i k \tau)$ we evidently have

$$\sum_{0 \le b < d} \sum_{k} a_{k} \exp\left(2\pi i k \frac{a\tau + b}{d}\right) = \sum_{j} da_{dj} \exp\left(2\pi i j a\tau\right),$$

as for k not divisible by d

$$\sum_{0 \le b < d} \exp\left(2\pi i k \frac{b}{d}\right) = 0,$$

and for divisible k this sum equals d.

So, the Newton symmetric functions of $j(\frac{a\tau+b}{d})$ have required *q*-expansion and are polynomials in $j(\tau)$ with integer coefficients.

The elementary symmetric functions are polynomials in the Newton functions with rational coefficients, hence are series in $\exp(2\pi i \tau)$ with rational coefficients. At the other hand, just by definition they are series in exp $\left(2\pi i \frac{\tau}{N}\right)$ with coefficients in $\mathbb{Z}\left[\exp\left(\frac{2\pi i}{N}\right)\right]$. So they are series in $\exp(2\pi i \tau)$ with integer coefficients. Hence $\Lambda_N(X)$ equals $\Psi_N(X, j(\tau))$ where $\Psi_N(X, Y)$ is a polynomial with integer coefficients. For calculation we can use the following trick. As $j = q^{-1} + \sum_{k=0}^{\infty} a_k q^k$, $j^{-1} = q + \sum_{k=2}^{\infty} b_k q^k$, one can invert this relation: $q = i^{-1} + \sum_{k=2}^{\infty} r_k i^{-k}$. Then $j^{-1} = q + \sum_{k=0}^{\infty} b_k q^k \Psi_N(X, j(\tau))$ is the result of the substitution this expression of q into $\Lambda_N(X)$. Such $\Psi_N(X, Y)$ is a priori a polynomial in X and a Laurent series in Y^{-1} . The values of *j*, which we study, are roots of the polynomial $\Psi_N(X,X)$. We shall evaluate the coefficient of the leading term of this polynomial.

For fixed a and d consider the product

$$\Lambda_{a,d}(X) = \prod_{0 \le b < d} \left(X - j\left(\frac{a\tau + b}{d}\right) \right)$$

As above, $\Lambda_{a,d}(X)$ is equal to $\Psi_{a,d}(X, j(\tau))$, where $\Psi_{a,d}(X, Y)$ is a polynomial in X and a Laurent series in Y^{-1}

$$\Lambda_{a,d}(X) = \prod_{0 \le b < d} \left(\left(X - \exp(-2\pi i \frac{a\tau + b}{d}) \right) + \phi_a \right) =$$
$$= \prod_{0 \le b < d} \left(X - \exp(-2\pi i \frac{a\tau + b}{d}) \right) + \sum_{\alpha} g_{\alpha} X^{\alpha},$$

where $\phi_a(\tau)$ corresponds to the sum of the regular terms in expansion of j; $g_\alpha(\tau)$ is the sum of the products which contains at least one ϕ_a as a factor. So, the degree of ϕ_a in $\exp(-\frac{a\tau}{d})$ is less than $d - \alpha$. $\prod_{0 \le k \le d} \left(X - \exp(-\frac{a\tau+b}{d})\right) = X^d - \left(\exp\left(-\frac{a\tau}{d}\right)\right)^d = X^d - q^{-a}.$ Restrict ourselves by the case then N is not square, so either a > d or a < d

for a > d the degree of g_{α} in $\exp(-2\pi i\tau)$ is less then $(d - \alpha)\frac{a}{d}$. so the degree correspondent contribution to

For a < d we apply the following speculation. The polynomial Ψ is symmetric: $\Psi(X, Y) = \Psi(Y, X)$.. Indeed, If

 $\tau_1 = (a\tau_2 + b)/(c\tau_2 + d)$, then $\tau_2 = (d\tau_1 - b)/(-c\tau_1 + a)$. The symmetry interchanges *a* and *d*, hence $\psi_{a,d}$ is a Laurent series in *Y* of total degree less that *d* for d > a.

We have proved that the "auxiliary" terms g_{α} does not contribute to the leading term, So the leading term of $\Psi(X, X) = \Pi$, $\Psi_{\alpha}(X, X)$ equals +1

 $\Psi_n(X,X) = \prod_{ad=N} \Psi_{a,d}(X,X)$ equals ± 1