Elementary Introduction to the Theory of Automorphic forms Lecture10

Andrey Levin

NRU HSE Faculty of Mathematics

April 21, 2021

The product formula for difference of the *j*-invariants.

Theorem For modular invariant $j(q) = q^{-1} + \sum c(k)q^k$ one has

$$j(p) - j(q) = \frac{q - p}{qp} \prod_{m,n=1}^{\infty} (1 - p^m q^n)^{c(mn)}$$

Proof.

$$j(p)-j(q)=\frac{q-p}{qp}\left(1-\sum_{m,n=1}^{\infty}c(m+n-1)p^mq^n\right)$$

٠

Consider the logarithmic derivative with respect to the second variable $\frac{\log p}{2\pi i}$

$$\frac{p}{p-q} - 1 + \sum_{m,n=1}^{\infty} C(m,n) p^m q^n = \sum_{n=1}^{\infty} q^n \left(p^{-n} + \sum_{m=1}^{\infty} C(m,n) p^m \right) =$$

$$=\sum_{n=1}^{\infty}q^{n}\mathcal{P}_{-n}(p)$$

As $d\left(\frac{a\tau+b}{c\tau+d}\right) = \frac{d\tau}{(c\tau+d)^2}$, the logarithmic derivative should transform like modular form of the weight 2 (it is NOT modular form of the weight 2 as is singular at infinity).

Its q-coefficients $\mathcal{P}_{-n-1}(p)$ also transform like modular form of the weight 2.

From the cocycle condition we see that $(c\tau + d)^{-2}\mathcal{P}\left(\frac{a\tau+b}{c\tau+d}\right)$ depends from the left $\operatorname{SL}_2(\mathbb{Z})$ orbit of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$. From a speculation like in the previous lecture we see that

$$N^{-1}T_N(\mathcal{P}_{-1})(p) = p^{-N} + \sum_{l=1}^{\infty} \left(\sum_{ad=N} d^{-1}C(dl,1)\right) p^{la}$$

transforms like modular form of the weight 2. *Remark* Usually the Hecke operators T_N are defined by analogous formulas for modular forms.

We see that the difference $\mathcal{P}_{-N} - \mathcal{T}_N(\mathcal{P}_{-1})$ has not singularity at infinity and, so, is modular form of the weight 2. According to the structure theorem it vanishes. Substitute $\mathcal{T}_N(\mathcal{P}_{-1})$ instead \mathcal{P}_{-N} . We get

$$\sum_{m,n=1}^{\infty} C(m,n) p^m q^n = \sum_{l,a,d=1}^{\infty} d^{-1} C(dl,1) p^{la} q^{ad} =$$
$$-\sum_{m=1}^{\infty} d^{-1} C(dl,1) d \log(1-p^l q^d)$$

$$= \sum_{l,d=1} d^{-1}C(dl,1)d\log(1-p'q^d).$$

Finally we get for the infinite sum

$$(j(p) - j(q)) \frac{qp}{q - p} = \left(1 - \sum_{m,n=1}^{\infty} c(m + n - 1)p^m q^n\right) =$$

 $\prod_{l,d=1}^{\infty} \log(1 - p^l q^d)^{C(ld,1)/(ld)}.$

Compare coefficient of the monomial p^mq . In the product the monomial with first power of q corresponds to taking second term in exactly one factor with d = 1, in other factors we choose the term 1. So c(n) = C(n, 1)

So, we have proved the proposition in the following sense. This equality in the ring of the formal series in q with coefficients in convergent series in p.

Indeed, in the proof we differentiate and integrate with respect to p and use formula for geometric progression: $\frac{p}{1-pq} = \sum_{l=0}^{\infty} q^l p^{-l}$. All this operation are valid in the described above ring.

There is very natural question: is it possible to prove any version of convergence in q.

Theorem

In domain $\log |q| \log |p| > 4\pi^2$ the product converges We use that if $\sum \alpha_l$ converges then $\prod (1 + \alpha_l)$ converges We shall estimate coefficients of the *j*-invariants

Lemma

There are to possibility for $(a\tau + b)/(c\tau + d)$: either it is equal to $\tau + n$ so $\exp(2\pi i(a\tau + b)/(c\tau + d)) = \exp(2\pi i\tau)$ or $\Im((a\tau + b)/(c\tau + d)) \le 1/\Im(\tau)$

Proof. The first case corresponds to c = 0. If $c \neq 0$

$$\Im\left((a\tau+b)/(c\tau+d)
ight)=rac{\Im\left(au
ight)}{|c au+d)|^2}\leqrac{\Im\left(au
ight)}{\Im\left(au
ight)^2},$$

as $|c\tau + d)|^2 \ge c^2 \Im (\tau)^2 \ge \Im (\tau)^2$.

Lemma

The coefficients c(k) of the *j*-invariant $j(q) = q^{-1} + \sum c(k)q^k$ satisfy to the estimate $|c(k)| \le (K + \exp(\frac{-4\pi^2}{\log(r)}))r^{-n}$

for some constant K and any $\exp(-\sqrt{3}\pi) < r < 1$

Proof. These coefficients can be calculate by the Cauchy integral formula. So, it is sufficient to prove that $|j(q)| < K + \exp(\frac{4\pi^2}{\log(|q|)})$ if $\exp(-\sqrt{3}\pi) < |q| < 1$ Any τ , $\Im(\tau) \le \sqrt{3}/2$ is an image of some τ' from the modular figure, so $\Im(\tau') \ge \sqrt{3}/2$. Denote by *K* the maximum of $|j(\tau) - \exp(-2\pi i\tau)|$ on the modular figure. Then if $|j(\tau)| = |j(\tau')| > M \exp(2\pi \Im(\tau')) = |\exp(-2\pi i\tau')| > M - C$. From the previous lemma

$$\Im(au) \leq rac{1}{\Im(au')}$$

. combining these inequalities we get the bound.

Now we are able to prove the convergence theorem for the series

$$\sum_{m,n=1}^{\infty} c(mn)p^mq^n.$$

Fix some ρ such that $|q| < \rho < 1$ and $(\log |q| - \log a) \log |p| > 4\pi^2$. For any m pick $r > (|q|\rho^{-1})^{\frac{1}{m}}$. Then

$$\begin{aligned} |c(mn)p^{m}q^{n}| &< (K + \exp(-\frac{4\pi^{2}}{\log(r)}))r^{-nm}|p|^{m}|q|^{n} = \\ &= K(r^{-m}|q|)^{n}|p|^{m} + \exp(m\log|p| - \frac{4\pi^{2}}{\log(r)})(r^{-m}|q|)^{n} < \\ &< K\rho^{n}|p|^{m} + \exp(m(\log|p| - \frac{4\pi^{2}}{\log|q| - \log(a)}))\rho^{n}. \end{aligned}$$

According to inequalities on ρ this series converges.