Elementary Introduction to the Theory of Automorphic forms
 Lecture10

Andrey Levin

NRU HSE Faculty of Mathematics

April 21, 2021

The product formula for difference of the j-invariants.

Theorem
For modular invariant $j(q)=q^{-1}+\sum c(k) q^{k}$ one has

$$
j(p)-j(q)=\frac{q-p}{q p} \prod_{m, n=1}^{\infty}\left(1-p^{m} q^{n}\right)^{c(m n)}
$$

Proof.

$$
j(p)-j(q)=\frac{q-p}{q p}\left(1-\sum_{m, n=1}^{\infty} c(m+n-1) p^{m} q^{n}\right)
$$

Consider the logarithmic derivative with respect to the second variable $\frac{\log p}{2 \pi i}$
$\frac{p}{p-q}-1+\sum_{m, n=1}^{\infty} C(m, n) p^{m} q^{n}=\sum_{n=1}^{\infty} q^{n}\left(p^{-n}+\sum_{m=1}^{\infty} C(m, n) p^{m}\right)=$

$$
=\sum_{n=1}^{\infty} q^{n} \mathcal{P}_{-n}(p)
$$

As $d\left(\frac{a \tau+b}{c \tau+d}\right)=\frac{d \tau}{(c \tau+d)^{2}}$, the logarithmic derivative should transform like modular form of the weight 2 (it is NOT modular form of the weight 2 as is singular at infinity). Its q-coefficients $\mathcal{P}_{-n-1}(p)$ also transform like modular form of the weight 2.
From the cocycle condition we see that $(c \tau+d)^{-2} \mathcal{P}\left(\frac{a \tau+b}{c \tau+d}\right)$
depends from the left $\mathrm{SL}_{2}(\mathbb{Z})$ orbit of $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.

From a speculation like in the previous lecture we see that

$$
N^{-1} T_{N}\left(\mathcal{P}_{-1}\right)(p)=p^{-N}+\sum_{l=1}^{\infty}\left(\sum_{a d=N} d^{-1} C(d l, 1)\right) p^{l a}
$$

transforms like modular form of the weight 2. Remark Usually the Hecke operators T_{N} are defined by analogous formulas for modular forms.
We see that the difference $\mathcal{P}_{-N}-T_{N}\left(\mathcal{P}_{-1}\right)$ has not singularity at infinity and, so, is modular form of the weight 2 . According to the structure theorem it vanishes. Substitute $T_{N}\left(\mathcal{P}_{-1}\right)$ instead \mathcal{P}_{-N}. We get

$$
\begin{gathered}
\sum_{m, n=1}^{\infty} C(m, n) p^{m} q^{n}=\sum_{l, a, d=1}^{\infty} d^{-1} C(d l, 1) p^{l a} q^{a d}= \\
=\sum_{l, d=1}^{\infty} d^{-1} C(d l, 1) d \log \left(1-p^{\prime} q^{d}\right)
\end{gathered}
$$

Finally we get for the infinite sum

$$
\begin{gathered}
(j(p)-j(q)) \frac{q p}{q-p}=\left(1-\sum_{m, n=1}^{\infty} c(m+n-1) p^{m} q^{n}\right)= \\
\prod_{l, d=1}^{\infty} \log \left(1-p^{\prime} q^{d}\right)^{C(l d, 1) /(l d)} .
\end{gathered}
$$

Compare coefficient of the monomial $p^{m} q$. In the product the monomial with first power of q corresponds to taking second term in exactly one factor with $d=1$, in other factors we choose the term 1. So $c(n)=C(n, 1)$
So, we have proved the proposition in the following sense. This equality in the ring of the formal series in q with coefficients in convergent series in p.
Indeed, in the proof we differentiate and integrate with respect to p and use formula for geometric progression: $\frac{p}{1-p q}=\sum_{l=0}^{\infty} q^{\prime} p^{-1}$. All this operation are valid in the described above ring.
There is very natural question: is it possible to prove any version of convergence in q.

Theorem

In domain $\log |q| \log |p|>4 \pi^{2}$ the product converges
We use that if $\sum \alpha_{l}$ converges then $\prod\left(1+\alpha_{l}\right)$ converges We shall estimate coefficients of the j-invariants

Lemma

There are to possibility for $(a \tau+b) /(c \tau+d)$: either it is equal to
$\tau+n$ so $\exp (2 \pi i(a \tau+b) /(c \tau+d))=\exp (2 \pi i \tau)$ or
$\Im((a \tau+b) /(c \tau+d)) \leq 1 / \Im(\tau)$
Proof. The first case corresponds to $c=0$. If $c \neq 0$

$$
\Im((a \tau+b) /(c \tau+d))=\frac{\Im(\tau)}{\mid c \tau+d)\left.\right|^{2}} \leq \frac{\Im(\tau)}{\Im(\tau)^{2}}
$$

as $\mid c \tau+d)\left.\right|^{2} \geq c^{2} \Im(\tau)^{2} \geq \Im(\tau)^{2}$.

Lemma

The coefficients $c(k)$ of the j-invariant $j(q)=q^{-1}+\sum c(k) q^{k}$ satisfy to the estimate
$|c(k)| \leq\left(K+\exp \left(\frac{-4 \pi^{2}}{\log (r)}\right)\right) r^{-n}$
for some constant K and any $\exp (-\sqrt{3} \pi)<r<1$
Proof. These coefficients can be calculate by the Cauchy integral formula. So, it is sufficient to prove that $|j(q)|<K+\exp \left(\frac{4 \pi^{2}}{\log (|q|)}\right)$
if $\exp (-\sqrt{3} \pi)<|q|<1$
Any $\tau, \Im(\tau) \leq \sqrt{3} / 2$ is an image of some τ^{\prime} from the modular figure, so $\Im\left(\tau^{\prime}\right) \geq \sqrt{3} / 2$. Denote by K the maximum of $|j(\tau)-\exp (-2 \pi i \tau)|$ on the modular figure. Then if $|j(\tau)|=\left|j\left(\tau^{\prime}\right)\right|>M \exp \left(2 \pi \Im\left(\tau^{\prime}\right)=\left|\exp \left(-2 \pi i \tau^{\prime}\right)\right|>M-C\right.$.
From the previous lemma

$$
\Im(\tau) \leq \frac{1}{\Im\left(\tau^{\prime}\right)}
$$

. combining these inequalities we get the bound.

Now we are able to prove the convergence theorem for the series

$$
\sum_{m, n=1}^{\infty} c(m n) p^{m} q^{n}
$$

Fix some ρ such that $|q|<\rho<1$ and
$(\log |q|-\log a) \log |p|>4 \pi^{2}$. For any m pick $r>\left(|q| \rho^{-1}\right)^{\frac{1}{m}}$. Then

$$
\begin{gathered}
\left|c(m n) p^{m} q^{n}\right|<\left(K+\exp \left(-\frac{4 \pi^{2}}{\log (r)}\right)\right) r^{-n m}|p|^{m}|q|^{n}= \\
= \\
K\left(r^{-m}|q|\right)^{n}|p|^{m}+\exp \left(m \log |p|-\frac{4 \pi^{2}}{\log (r)}\right)\left(r^{-m}|q|\right)^{n}< \\
\quad<K \rho^{n}|p|^{m}+\exp \left(m\left(\log |p|-\frac{4 \pi^{2}}{\log |q|-\log (a)}\right)\right) \rho^{n} .
\end{gathered}
$$

According to inequalities on ρ this series converges.

