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Expansion for the Siegel Forms and the Jacobi Forms.

Reminder.The symplectic group Spg is the group of 2g × 2g

matrices h the shape
(

A B
C D

)
such that

(
Dt −Bt

−C t At

)
is

inverse of h. So, SL2 = Sp1.
The Siegel upper half-space Hg is the set of complex symmetric
g × g matrices Ω with positive defined imaginary part,
Ωt = Ω, Ω−Ω

2i � 0.
The group Spg (R) acts on Hg by the rule
Ω 7→ (AΩ + B)(CΩ + D)−1.
The automorphic factor is equal to det(CΩ + D). The Siegel
modular form F (Ω) of the weight k is a holomorphic function in Ω
such that

F
(
(AΩ + B)(CΩ + D)−1) = det(CΩ + D)kF (Ω)



For genus 2 Sigel upper half-plane put

Ω =

(
τ ξ
ξ ω

)
Note that if C = 0 D−1 = At and the action is Ω 7→ (AΩ + B)At

A B (AΩ + B)At(
1 0
0 1

) (
0 0
0 1

) (
τ ξ
ξ ω + 1

)
(
1 0
0 1

) (
0 1
1 0

) (
τ ξ + 1

ξ + 1 ω

)
(
1 0
1 1

) (
0 0
0 0

) (
τ ξ + τ

ξ + τ ω + 2ξ + τ

)
The automorphic factor is equal to detA−1 = 1.



According to the first row of the table we can pass to variable
p = exp(2πiω). Hence any Siegel modular form F (Ω) of the weight
k is a function on the domain
(τ ∈ H, ξ ∈ C, log 0 < |p| < −max

(
0, (=(ξ))2

=(τ)

)
, so can be

expanded as F (Ω) =
∑

m φm(τ, ξ)pm, as . From the second and
third rows we deduce that φm(τ, ξ + 1) = φm(τ, ξ),
φm(τ, ξ + τ) = exp(−2πim(2ξ + τ))φm(τ, ξ)

If ad − bc = 1, put A =

(
a 0
0 1

)
, B =

(
b 0
0 0

)
, =

(
c 0
0 0

)
and

D =

(
d 0
0 1

)
Then (τ, ξ, ω)→

(
aτ+b
cτ+d ,

ξ
cτ+d , ω −

cξ2

cτ+d

)
. The

automorphic factor is equal to cτ + d . So

φm

(
aτ + b

cτ + d
,

ξ

cτ + d

)
= (cτ + d)kexp

(
2πim

cξ2

cτ + d

)
φm(τ, ξ).

Such functions φm are known as weak Jacobi modular forms of the
weight k and index m.



By the argument principle applied to the parallelogram in ξ
complex plane with vertices 0, 1,1 + τ and τ we deduce that the
number of zeroes minus number poles equals to 2m, So for
holomorphic F only non negative m contribute to p-expansion.
At the other hand, from the first and second rows of the table and(
a b
c d

)
=

(
1 1
0 1

)
one has F (Ω) =

∑
c(n, r ,m)qnz rpm, where,

as above q = exp(2πiτ), z = exp(2πiξ) and p = exp(2πiω).This
expansion is not so straightforward as
(exp(2πiτ), exp(2πiξ), exp(2πiω)) maps H2 to the domain
0 < |q| < 1, 0 < |p| < 1, 0 < |z | <

√
|q||p|. It is useful to express

qnz rpm = exp(2πitr(MΩ)), where M =

(
n r

2
r
2 m

)
.

from the previous slide we now that in this sum terms with negative
m and, by symmetry, with negative n are absent. Let as prove using
action Ω 7→ AΩAt the following



Proposition
A monomial contributes to the expansion of a modular form only if
the matrix M is positive semidefined, so 4mn − r2 ≥ 0.
Proof. The monomial exp(2πitr(MΩ)) transforms to
exp(2πitr(M(AΩAt))) = exp(2πitr((AtMA)Ω)), so the coefficients
corresponding to M and AtMA coincide.
Let M is not positive semidefined, then there is an integer primitive
(gcd(α, γ) = 1) column v v t =

(
α γ

)
such that v tMv < 0.

Complete it to unimodular matrix A =

(
α β
γ δ

)
.Then one of the

diagonal element of the matrix AtMA equals v tMv and is negative,
so corresponding to AtMA coefficient vanishes and coefficients of
M-monomial vanishes too. In contrast with dimension one, the
positivity condition follows from the automorphic property. This
motivate stronger version of the definition of Jacobi form



Definition
( The Theory of Jacobi Forms Birkhäuser Basel Martin Eichler,
Don Zagier Introduction) A function F (τ, ξ) on H× C is Jacobi
modular form of the weight k and index m if it is weak Jacobi form:
φm(τ, ξ + 1) = φm(τ, ξ),
φm(τ, ξ + τ) = exp(−2πim(2ξ + τ))φm(τ, ξ) If ad − bc = 1,
φm

(
aτ+b
cτ+d ,

ξ
cτ+d

)
= (cτ + d)kexp

(
2πim cξ2

cτ+d

)
φm(τ, ξ).

and can be represented as a sum

F (τ, ξ) =
∑

n≥0,4mn−r2≥0

a(n, r) exp(2πi(nτ + rξ)).



The Jacobi Group


1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1



a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


Interchange 1 and 2

hell =


1 λ µ κ
0 1 0 µ
0 0 1 −λ
0 0 0 1

 , hmod =


1 0 0 0
0 a b 0
0 c d 0
0 0 0 1





Evidently the product of two matrices of elliptic type is elliptic, the
product of two matrices of modular type is modular. The product

hmodhell =


1 λ µ κ
0 a b aµ− bλ
0 c d cµ− dλ
0 0 0 1

 =

=


1 aλ′ + cµ′ dλ′ + dµ′ κ
0 a b µ′

0 c d −λ′
0 0 0 1

 = h′ellhmod

(
µ′

−λ′
)

=

(
a b
c d

)(
µ
−λ

)
⇐⇒

(
λ µ

)
=
(
λ′ µ′

)( a b
c d

)
.

Matrices of such shape forms a group. Indeed
(h

(1)
modh

(1)
ell )(h

(2)
modh

(2)
ell ) = h

(1)
mod(h

(1)
ell h

(2)
mod)h

(2)
ell =

h
(1)
mod(h

(2)
modh

(1)′
ell)h

(2)
ell = (h

(1)
modh

(2)
mod)(h(1)′

ellh
(2)
ell ) = hmodhell


