Elementary Introduction to the Theory of Automorphic forms Lecture11

Andrey Levin

NRU HSE Faculty of Mathematics

April 28, 2021

## Expansion for the Siegel Forms and the Jacobi Forms.

*Reminder*. The symplectic group  $Sp_g$  is the group of  $2g \times 2g$ matrices *h* the shape  $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$  such that  $\begin{pmatrix} D^t & -B^t \\ -C^t & A^t \end{pmatrix}$  is inverse of h. So,  $SL_2 = Sp_1$ . The Siegel upper half-space  $\mathbb{H}_g$  is the set of complex symmetric  $g \times g$  matrices  $\Omega$  with positive defined imaginary part,  $\Omega^t = \Omega, \frac{\Omega - \overline{\Omega}}{2i} \gg 0.$ The group  $\operatorname{Sp}_{\sigma}(\mathbb{R})$  acts on  $\mathbb{H}_{g}$  by the rule  $\Omega \mapsto (A\Omega + B)(C\Omega + D)^{-1}.$ The automorphic factor is equal to det( $C\Omega + D$ ). The Siegel modular form  $F(\Omega)$  of the weight k is a holomorphic function in  $\Omega$ such that

$$F((A\Omega + B)(C\Omega + D)^{-1}) = \det(C\Omega + D)^k F(\Omega)$$

For genus 2 Sigel upper half-plane put

$$\Omega = \left( egin{array}{cc} au & \xi \ \xi & \omega \end{array} 
ight)$$

Note that if C = 0  $D^{-1} = A^t$  and the action is  $\Omega \mapsto (A\Omega + B)A^t$ 



The automorphic factor is equal to det  $A^{-1} = 1$ .

According to the first row of the table we can pass to variable  $p = \exp(2\pi i\omega)$ . Hence any Siegel modular form  $F(\Omega)$  of the weight k is a function on the domain  $( au \in \mathbb{H}, \xi \in \mathbb{C}, \log 0 < |\mathbf{p}| < -\max\left(0, \frac{(\Im(\xi))^2}{\Im( au)}
ight)$ , so can be expanded as  $F(\Omega) = \sum_{m} \phi_m(\tau,\xi) p^m$ , as . From the second and third rows we deduce that  $\phi_m(\tau, \xi + 1) = \phi_m(\tau, \xi)$ .  $\phi_m(\tau,\xi+\tau) = \exp(-2\pi i m (2\xi+\tau))\phi_m(\tau,\xi)$ If ad - bc = 1, put  $A = \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ ,  $B = \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix}$ ,  $= \begin{pmatrix} c & 0 \\ 0 & 0 \end{pmatrix}$  $\quad \text{and} \quad$  $D = \begin{pmatrix} d & 0 \\ 0 & 1 \end{pmatrix}$  Then  $(\tau, \xi, \omega) \to \left(\frac{a\tau+b}{c\tau+d}, \frac{\xi}{c\tau+d}, \omega - \frac{c\xi^2}{c\tau+d}\right)$ . The automorphic factor is equal to  $c\tau + d$ . So

$$\phi_m\left(\frac{a\tau+b}{c\tau+d},\frac{\xi}{c\tau+d}\right) = (c\tau+d)^k \exp\left(2\pi i m \frac{c\xi^2}{c\tau+d}\right) \phi_m(\tau,\xi).$$

Such functions  $\phi_m$  are known as weak *Jacobi modular forms* of the weight *k* and *index m*.

By the argument principle applied to the parallelogram in  $\xi$ complex plane with vertices 0,  $1.1 + \tau$  and  $\tau$  we deduce that the number of zeroes minus number poles equals to 2m, So for holomorphic F only non negative m contribute to p-expansion. At the other hand, from the first and second rows of the table and  $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$  one has  $F(\Omega) = \sum c(n, r, m)q^n z^r p^m$ , where, as above  $q = \exp(2\pi i \tau)$ ,  $z = \exp(2\pi i \xi)$  and  $p = \exp(2\pi i \omega)$ . This expansion is not so straightforward as  $(\exp(2\pi i\tau), \exp(2\pi i\xi), \exp(2\pi i\omega))$  maps  $\mathbb{H}_2$  to the domain  $0 < |q| < 1, 0 < |p| < 1, 0 < |z| < \sqrt{|q||p|}$ . It is useful to express  $q^{n}z^{r}p^{m} = \exp(2\pi i \operatorname{tr}(M\Omega)), \text{ where } M = \begin{pmatrix} n & \frac{r}{2} \\ \frac{r}{2} & m \end{pmatrix}.$ 

from the previous slide we now that in this sum terms with negative m and, by symmetry, with negative n are absent. Let as prove using action  $\Omega \mapsto A\Omega A^t$  the following

## Proposition

A monomial contributes to the expansion of a modular form only if the matrix M is positive semidefined, so  $4mn - r^2 \ge 0$ .

Proof. The monomial  $\exp(2\pi i \operatorname{tr}(M\Omega))$  transforms to  $\exp(2\pi i \operatorname{tr}(M(A\Omega A^t)))) = \exp(2\pi i \operatorname{tr}((A^t M A)\Omega)))$ , so the coefficients corresponding to M and  $A^tMA$  coincide. Let M is not positive semidefined, then there is an integer primitive  $(\gcd(\alpha, \gamma) = 1)$  column  $v v^t = (\alpha \gamma)$  such that  $v^t M v < 0$ . Complete it to unimodular matrix  $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ . Then one of the diagonal element of the matrix  $A^{t}MA$  equals  $v^{t}Mv$  and is negative, so corresponding to  $A^tMA$  coefficient vanishes and coefficients of M-monomial vanishes too. In contrast with dimension one, the positivity condition follows from the automorphic property. This motivate stronger version of the definition of Jacobi form

## Definition

( The Theory of Jacobi Forms Birkhäuser Basel Martin Eichler, Don Zagier Introduction) A function  $F(\tau, \xi)$  on  $\mathbb{H} \times \mathbb{C}$  is Jacobi modular form of the weight k and index m if it is weak Jacobi form:  $\phi_m(\tau, \xi + 1) = \phi_m(\tau, \xi),$  $\phi_m(\tau, \xi + \tau) = \exp(-2\pi i m (2\xi + \tau))\phi_m(\tau, \xi)$  If ad - bc = 1,  $\phi_m\left(\frac{a\tau+b}{c\tau+d}, \frac{\xi}{c\tau+d}\right) = (c\tau + d)^k \exp\left(2\pi i m \frac{c\xi^2}{c\tau+d}\right)\phi_m(\tau, \xi).$ and can be represented as a sum

$$F(\tau,\xi) = \sum_{n\geq 0, 4mn-r^2\geq 0} a(n,r) \exp(2\pi i(n\tau+r\xi)).$$

## The Jacobi Group

$$\begin{pmatrix} 1 & 0 & 0 & \mu \\ \lambda & 1 & \mu & \varkappa \\ 0 & 0 & 1 & -\lambda \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & 0 & b & 0 \\ 0 & 1 & 0 & 0 \\ c & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Interchange 1 and 2

$$h_{\rm ell} = \begin{pmatrix} 1 & \lambda & \mu & \varkappa \\ 0 & 1 & 0 & \mu \\ 0 & 0 & 1 & -\lambda \\ 0 & 0 & 0 & 1 \end{pmatrix}, h_{\rm mod} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & a & b & 0 \\ 0 & c & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Evidently the product of two matrices of elliptic type is elliptic, the product of two matrices of modular type is modular. The product

$$h_{
m mod} h_{
m ell} = egin{pmatrix} 1 & \lambda & \mu & arkappa \ 0 & a & b & a \mu - b \lambda \ 0 & c & d & c \mu - d \lambda \ 0 & 0 & 0 & 1 \end{pmatrix} =$$

$$=egin{pmatrix} 1 & a\lambda'+c\mu' & d\lambda'+d\mu' & arkappa \ 0 & a & b & \mu' \ 0 & c & d & -\lambda' \ 0 & 0 & 0 & 1 \end{pmatrix} = h_{ ext{ell}}'h_{ ext{mod}}$$

$$\begin{pmatrix} \mu' \\ -\lambda' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \mu \\ -\lambda \end{pmatrix} \iff (\lambda \quad \mu) = (\lambda' \quad \mu') \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Matrices of such shape forms a group. Indeed  $(h_{\text{mod}}^{(1)}h_{\text{ell}}^{(1)})(h_{\text{mod}}^{(2)}h_{\text{ell}}^{(2)}) = h_{\text{mod}}^{(1)}(h_{\text{ell}}^{(1)}h_{\text{mod}}^{(2)})h_{\text{ell}}^{(2)} = h_{\text{mod}}^{(1)}(h_{\text{mod}}^{(2)}h_{\text{ell}}^{(1)}) = h_{\text{mod}}h_{\text{ell}}$