Elementary Introduction to the Theory of Automorphic forms
 Lecture12

Andrey Levin

NRU HSE Faculty of Mathematics
May 15, 2021

The Integer Jacobi Group.

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & \mu \\
\lambda & 1 & \mu & \varkappa \\
0 & 0 & 1 & -\lambda \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & 1 & 0 & 0 \\
c & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Interchange 1 and 2

$$
h_{\text {ell }}=\left(\begin{array}{cccc}
1 & \lambda & \mu & \varkappa \\
0 & 1 & 0 & \mu \\
0 & 0 & 1 & -\lambda \\
0 & 0 & 0 & 1
\end{array}\right), h_{\bmod }=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & a & b & 0 \\
0 & c & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Evidently the product of two matrices of elliptic type is elliptic, the product of two matrices of modular type is modular. The product

$$
\begin{gathered}
h_{\mathrm{mod}} h_{\mathrm{ell}}=\left(\begin{array}{cccc}
1 & \lambda & \mu & \varkappa \\
0 & a & b & a \mu-b \lambda \\
0 & c & d & c \mu-d \lambda \\
0 & 0 & 0 & 1
\end{array}\right)= \\
=\left(\begin{array}{cccc}
1 & a \lambda^{\prime}+c \mu^{\prime} & d \lambda^{\prime}+d \mu^{\prime} & \varkappa \\
0 & a & b & \mu^{\prime} \\
0 & c & d & -\lambda^{\prime} \\
0 & 0 & 0 & 1
\end{array}\right)=h_{\mathrm{ell}}^{\prime} h_{\mathrm{mod}} \\
\binom{\mu^{\prime}}{-\lambda^{\prime}}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{\mu}{-\lambda} \Longleftrightarrow\left(\begin{array}{ll}
\lambda & \mu
\end{array}\right)=\left(\begin{array}{ll}
\lambda^{\prime} & \mu^{\prime}
\end{array}\right)\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) .
\end{gathered}
$$

Matrices of such shape forms a group. Indeed $\left(h_{\text {mod }}^{(1)} h_{\text {ell }}^{(1)}\right)\left(h_{\text {mod }}^{(2)} h_{\text {ell }}^{(2)}\right)=h_{\text {mod }}^{(1)}\left(h_{\text {ell }}^{(1)} h_{\text {mod }}^{(2)}\right) h_{\text {ell }}^{(2)}=$ $h_{\text {mod }}^{(1)}\left(h_{\text {mod }}^{(2)} h^{(1) \prime}\right) ~ h_{\text {ell }}^{(2)}=\left(h_{\text {mod }}^{(1)} h_{\text {mod }}^{(2)}\right)\left(h_{\text {ell }}^{(1) \prime} h_{\text {ell }}^{(2)}\right)=h_{\text {mod }} h_{\text {ell }}$

The Algebraic Jacobi Group.

Evidently we can treat the entries of matrices above as elements of any commutative ring with unit. So we can determine corresponding algebraic group \mathbb{G}^{J}. It is the contain the block-diagonal subgroup SL_{2} of modular transformations and block-upper triangular normal subgroup $\mathbb{G}^{\text {Heis }}, G^{J} / G^{\text {Heis }}=\mathrm{SL}_{2}$.
The Heisenberg group $G^{\text {Heis }}$ is the central extension of the quotient group is $\mathbb{V}=\mathbb{G}_{a} \times \mathbb{G}_{a}$ with coordinates λ, μ by the additive subgroup $C=\mathbb{G}_{a}$ with coordinate determined by 2-cocycle $\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1}$:
$\left(\lambda_{1}, \mu_{1} ; \varkappa_{1}\right) *\left(\lambda_{2}, \mu_{2} ; \varkappa_{2}\right)=\left(\lambda_{1}+\lambda_{2}, \mu_{1}+\mu_{2} ; \varkappa_{1}+\kappa_{2}+\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1}\right)$. SL_{2} acts on \mathbb{V} as multiplication of column $\binom{\mu}{-\lambda}$ by matrix
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. This action preserves the cocycle, so SL_{2} acts on $\mathbb{G}^{\text {Heis }}$.

More Invariant Description

As we switch two fist basic vectors, we deal with symplectic four-dimensional space T with antidiagonal form:

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

The Jacobi group \mathbb{G}^{J} stabilises the vector $v=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)^{t}$, which generate one-dimensional subspace V. Prove that this subgroup coincides with stabiliser of this vector.
Let h stabilize vector v, this forced to vanish all except the first entries of the first column. Symplectic operator preserve the orthogonal space $V^{\perp}=\left\{\left(\begin{array}{llll}* & * & *\end{array}\right)^{t}\right\}$, so all except the last elements of the last raw vanish also.
As T / V^{\perp} is dual to V, action on it is identical. This is 1 as the last diagonal element As this group preserves the flag $V \subset V^{\perp}$, hence it acts symplectic on the quotient $U=V^{\perp} / V$. This is the middle diagonal block of the matrix.

If h is identical on V^{\perp} / V, the operator $H=h-I d$ vanishes on T / V^{\perp} and V^{\perp} / V, so it induces maps $H_{1}: V^{*} \rightarrow U$ and $H_{2}: U \rightarrow V$. The fist map H_{1} determines a vector $u \in U$, the second map H_{2} get a covector $\chi \in U^{*}$, this covector is opposite to the sympletcic pairing in U with u.

The action of the Real Jacobi Group

For fixed τ the real Heisenberg group $G^{\text {Heis }}(\mathbb{R})$ transitive acts on \mathbb{C} through its quotient $\mathbb{V}(\mathbb{R}): \xi \rightarrow \xi+\lambda \tau+\mu$.
This action is compatible with the action of $\mathrm{SL}_{2}(\mathbb{R}): \xi \rightarrow \frac{\xi}{c \tau+d}$. This defines transitive action of $G^{\mathrm{J}}(\mathbb{R})$ on $\mathbb{H} \times \mathbb{C}$. The stabilizer of the point $(i, 0)$ equals to $\mathrm{SO}_{2}(\mathbb{R}) \times C(\mathbb{R})$. This group is not compact, so it is reasonable to pass to quotients $C(\mathbb{R}) / C(\mathbb{Z})$ and $\tilde{G}^{\mathrm{J}}(\mathbb{R})=G^{\mathrm{J}}(\mathbb{R}) / C(\mathbb{Z})$
There are two automorphic factors. The first is induced by the map $G^{\mathrm{J}} / G^{\text {Heis }} \rightarrow \mathrm{SL}_{2}$. The second is defined on $G^{\text {Heis }}$ by the formula $\exp \left(2 \pi i\left(2 \lambda \xi \lambda^{2} \tau+\lambda \mu+\varkappa\right)\right)$ and equls to $\exp \left(-2 \pi i\left(2 \frac{c \xi^{2} \tau}{c \tau+d}\right)\right)$ on SL_{2}. Note that the action does not depend in the center $C(\mathbb{C})$ of the group, but the second automorphic factor depends in $C(\mathbb{C})$ and can be pushed forward to the quotient by $C(\mathbb{Z})$. Hence one can define the Eisenstein series a as basic examples of the Jacobi modular forms

Several General Remarks.

In our study p.q, r-development we use the group of matrices of the shape $\left(\begin{array}{cc}A & B \\ 0 & \left(A^{t}\right)^{-1}\end{array}\right)$ They form the stabiliser of the 2-plane V generated by to vectors $v_{1}=\left(\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)^{t}$ and $v_{2}=\left(\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right)^{t}$. This is Lagrangian plane - the restriction of the symplectic structure on it vanishes.
In both cases the groups are parabolic subgroups. For the Siegel spaces of bigger dimension one can pick stabilisers of isotropic subspaces of appropriate dimension.
For hyper-lorenzian quadratic forms one have the analogous construction for stabiliser of an integer light-vector.

The Golden Ratio Order. Reminder.

The golden ratio is defined by expression $\phi=\frac{\sqrt{5}+1}{2}$. Consider the group $\mathcal{O}_{5}=\{m \phi+n \mid m, n \in \mathbb{Z}\}$ This group is a ring as $\phi^{2}=\phi+1$. There are two ring embedding $\mathcal{O}_{5} \ni \nu \rightarrow \nu^{ \pm} \in \mathbb{R}$ of \mathcal{O}_{5} into \mathbb{R} by choosing the sign of $\sqrt{5}: \mathcal{O}_{5} \ni \phi \rightarrow \phi^{ \pm}=\frac{ \pm \sqrt{5}+1}{2} \in \mathbb{R}(\sqrt{5}>0)$ The image of any from both these maps is dense, but the image of their sum $\mathcal{O}_{5} \ni \nu \rightarrow\left(\nu^{+}, \nu^{-}\right) \in \mathbb{R} \oplus \mathbb{R}$ is dense as images of 1 and ϕ form a basis: $\left|\begin{array}{ll}1 & \phi^{+} \\ 1 & \phi^{-}\end{array}\right|=-\sqrt{5} \neq 0$. Define the trace and the norm on $\mathbb{R} \oplus \mathbb{R}$ as $\operatorname{tr}\left(x^{+}, y^{-}\right)=x^{+}+x^{-}, \operatorname{Norm}\left(x^{+}, x^{-}\right)=x^{+} x^{-}$ and induce them to \mathcal{O}_{5} using the canonical embedding. Call $\left(x^{+}, x^{-}\right) \in \mathbb{R} \oplus \mathbb{R}$ totally positive $\left(\left(x^{+}, x^{-}\right) \gg 0\right)$ iff both components are positive. This notion also can be induced to \mathcal{O}_{5}. F,e. $\phi^{2}=\frac{\sqrt{5}+3}{2}$ is totally positive but $\phi=\frac{\sqrt{5}+1}{2}$ is not.

We shall describe \mathcal{O}_{5}-invariant exponential functions on \mathbb{R}^{2}. For this note that the pairing $\left(\frac{1}{\sqrt{5}} \mathcal{O}_{5}\right) \times \mathcal{O}_{5} \rightarrow \mathbb{Q},(\mu, \nu) \rightarrow \operatorname{tr}(\mu \nu)$ is integer and perfect. So, all invariant exponential functions have the shape $\mathrm{e}_{\mu}(x)=\exp (2 \pi i \operatorname{tr}(\mu x))$
In contrast to the ring of the integers \mathbb{Z}, the group \mathcal{O}_{5}^{*} of invertible elements of \mathcal{O}_{5} does not reduce to ± 1, f.e. as $\phi(\phi-1)=1, \phi$ is invertible. It not so hard to check that $\mathcal{O}_{5}^{*}= \pm \phi^{\mathbb{Z}}$

