Elliptic Integrals and Elliptic Functions

Takashi Takebe

21 September 2021

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:

$$
(\text { your final mark })=\min \left\{15 \times \frac{\text { total points you get }}{\text { max. possible points }}, 10\right\}
$$

- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of 4-6: 28 September 2021.

4. (1 pt.) Let $R(x, s)$ be a rational function of x and s and $\varphi(x)$ be a polynomial of degree four without multiple roots. Show that the elliptic integral $\int R(x, \sqrt{\varphi(x)}) d x$ is rewritten in the form $\int \tilde{R}(y, \sqrt{\psi(y)}) d y$, where $\tilde{R}\left(y, s^{\prime}\right)$ is a rational function in $\left(y, s^{\prime}\right)$ and $\psi(y)$ is a polynomial of degree three. (Hint: Use a fractional linear transformation of the variable $x \mapsto y$, which sends one of the roots of $\varphi(x)$ to ∞.)
5. (1 pt.) In the lecture, we claimed that an elliptic integral $\int R(x, \sqrt{\varphi(x)}) d x$
with $\varphi(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right)\left(x-\alpha_{3}\right)\left(x-\alpha_{4}\right)$ can be transformed into $\int \tilde{R}\left(y, \sqrt{\varphi_{k}(y)}\right) d y$ with $\varphi_{k}(y)=\left(1-y^{2}\right)\left(1-k^{2} y^{2}\right)(k \neq 0, \pm 1)$ by a fractional linear transformation.
(i) Assuming that such a fractional linear transformation exists, express k in terms of the cross-ratio (the anharmonic ratio) $\lambda=\frac{\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{4}\right)}{\left(\alpha_{1}-\alpha_{4}\right)\left(\alpha_{2}-\alpha_{3}\right)}$ of $\alpha_{1}, \ldots, \alpha_{4}$. (The answer is not unique, but you have only to find one. Hint: show and use the fact that the fractional linear transformation preserves the anharmonic ratio.)
(ii) Show that such a linear transformation really exists.
6. (1 pt.) Reduce the elliptic integral $\int \frac{x^{4} d x}{\sqrt{\left(1-x^{2}\right)\left(1-2 x^{2}\right)}}$ to the standard form (a linear combination of an elementary function, the elliptic integrals of the first/second/third kinds).
