Elliptic Integrals and Elliptic Functions

Takashi Takebe

28 September 2021

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:

$$
(\text { your final mark })=\min \left\{15 \times \frac{\text { total points you get }}{\text { max. possible points }}, 10\right\}
$$

- About fifteen problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of $\mathbf{7 - 8}$: 5 October 2021.

7. (1 pt.) Prove that,

$$
\begin{aligned}
K(k) & \rightarrow \infty, \\
\operatorname{sn}(u, k) & \rightarrow \tanh u=\frac{\sinh u}{\cosh u}, \\
\operatorname{cn}(u, k), \operatorname{dn}(u, k) & \rightarrow \operatorname{sech} u=\frac{1}{\cosh u},
\end{aligned}
$$

when the modulus $k \in(0,1)$ tends to 1 .
8. (1 pt.) Complete the proof of the addition formula of $\operatorname{sn} u$, finishing the computation omitted in the lecture, especially $\frac{d N}{d u} D=N \frac{d D}{d u}$. Then, using this addition formula, prove the addition formulae for $\mathrm{cn} u$ and $\operatorname{dn} u$:

$$
\begin{aligned}
\operatorname{cn}(u+v) & =\frac{\operatorname{cn} u \operatorname{cn} v-\operatorname{sn} u \operatorname{sn} v \operatorname{dn} u \operatorname{dn} v}{1-k^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v}, \\
\operatorname{dn}(u+v) & =\frac{\operatorname{dn} u \operatorname{dn} v-k^{2} \operatorname{sn} u \operatorname{sn} v \operatorname{cn} u \operatorname{cn} v}{1-k^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v} .
\end{aligned}
$$

It is enough to check the consistency of these formulae with the definitions of cn and dn . (You can omit checking the signs of square roots.)
(Hint: The following formulae might be useful.
For $\mathrm{cn}(u+v): 1-k^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v=\mathrm{cn}^{2} u+\operatorname{sn}^{2} u \mathrm{dn}^{2} v=\mathrm{cn}^{2} v+\operatorname{sn}^{2} v \mathrm{dn}^{2} u$.
For $\left.\operatorname{dn}(u+v): 1-k^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} v=\operatorname{dn}^{2} u+k^{2} \operatorname{sn}^{2} u \mathrm{cn}^{2} v=\operatorname{dn}^{2} v+k^{2} \operatorname{sn}^{2} v \mathrm{cn}.\right)$

