Листок 2. Касательные пространства и ориентация многообразия Гладкие многообразия

Крайний cрок cдачи - 31.10.2020

- **1.** Постройте атласы $\mathbb{R}P^n$. При каких n эти многообразия являются ориентируемыми, а при каких нет?
- **2.** Покажите, что следующие группы являются гладкими многообразиями и опишите касательные пространство к ним в их матричных единицах, если (a) $G = SO(n, \mathbb{R})$; (б) $G = SU(n, \mathbb{C})$.
- 3. Пусть отображение $F:S^n\to \mathbb{R}P^n$, сопоставляющее каждой точке сферы S^n проходящую через неё и начало координат прямую в \mathbb{R}^{n+1} . Докажите, что отображение F гладкое, dF невырожден во всех точках.
- **4.** (а) Докажите, что лист Мёбиуса и бутылка Клейна— неориентируемые многообразия. (б) Докажите, что двумерное многообразие тогда и только тогда ориентируемо, когда не содержит в себе лист Мёбиуса.
- **5.** Введите структуры гладких C^k -многообразий на TM и T^*M , если M многообразие класса C^{k+1} или выше. Являются ли TM и T^*M ориентируемыми?
- **6.** Пусть $M-C^{\infty}$ -многообразие, а X,Y- векторные C^{∞} -поля, определенные в окрестности точки $p\in M$. Пусть g_1- интегральная кривая X, начинающаяся в p. Пусть для достаточно малого τ,g_2- интегральная кривая поля Y, начинающаяся в $g_1(\tau);g_3-$ интегральная кривая поля -X, начинающаяся в $g_2(\tau);g_4-$ интегральная кривая поля -Y, начинающаяся в $g_3(\tau)$. Определим кривую γ для достаточно малых τ следующим образом $\gamma(\tau^2)=g_4(\tau)$. Докажите, что

$$[X,Y](p) = \lim_{t \to +0} \dot{\gamma}(t).$$

7. Пусть D — бесконечно малый параллелепипед, V(D) — его объём, X — гладкое векторное поле с преобразованием потока φ_t , тогда

$$V(\varphi_t(D)) = V(D) + V(D)\operatorname{div}X(p) \cdot t + o(tV(D)), \quad t \to 0,$$

где p — одна из вершин параллелепипеда. В ортонормированной системе координат (x,y,z) дивергенция определяется как

$$\operatorname{div} X = \frac{\partial X^1}{\partial x} + \frac{\partial X^2}{\partial y} + \frac{\partial X^3}{\partial z}, \qquad X = (X^1, X^2, X^3).$$

8. Для всяких двух точек x, y связного гладкого многообразия M существует диффеоморфизм f такой, что f(x) = y.