Elliptic Functions

Riemann surfaces of algebraic functions.

§4.1 Riemann surface of algebraic functions.

Hitherto: elliptic integrals and elliptic functions (mainly) over \mathbb{R}.
Let us complexify the theories!
Want: integrals of $R(x, \sqrt{\varphi(x)})$ on \mathbb{C}.
\longrightarrow A problem of multi-valuedness (branches) of $\sqrt{\varphi(x)}$ occurs.

The simplest case: \sqrt{z}.

What is \sqrt{z} ? - " w which satisfies $w^{2}=z$ ".
Then \sqrt{z} cannot be uniquely determined: if $w^{2}=z$, then $(-w)^{2}=z$.
Where does this "-" sign come from?
$z=r e^{i \theta}(r=|z|, \theta=\arg z ;$ polar form $) \Longrightarrow \sqrt{z}=\sqrt{r} e^{i \theta / 2}$.

- For $r \in \mathbb{R}_{>0}, \sqrt{r}>0$ is uniquely determined.
- $\theta=\arg z$ is NOT unique! $\arg z$ is determined only up to $2 \pi \mathbb{Z}$:

$$
z=r e^{i \theta}=r e^{i(\theta \pm 2 \pi)}=r e^{i(\theta \pm 4 \pi)}=\cdots=r e^{i(\theta+2 n \pi)}
$$

Correspondingly,

$$
\sqrt{z}=\sqrt{r} e^{i(\theta+2 n \pi) / 2}=\sqrt{r} e^{i \theta+i n \pi}=(-1)^{n} \sqrt{r} e^{i \theta} .
$$

Two solutions to the multi-valuedness problem:

1. Restrict the range of \arg (e.g., $-\pi<\arg z \leqq \pi$).

- Not convenient, for example, to consider \sqrt{z} on a curve around 0 . (cf. Figure.) The range is arbitrarily chosen.

2. Double the domain of definition (Riemann's idea): Assign two "points" $(z,+)$ and $(z,-)$ to each $z \neq 0$.
D : "small" domain, $0 \notin D . \Longrightarrow D$ splits to D_{+}and D_{-}.

$z=r e^{i \theta}(\theta \in(-\pi, \pi]) \longrightarrow\left\{\begin{array}{l}\sqrt{(z,+)}=+\sqrt{r} e^{i \theta / 2}, \\ \sqrt{(z,-)}=-\sqrt{r} e^{i \theta / 2} .\end{array}\right.$

How about $z=0$? Since $\sqrt{0}=0$ is unique, it should not be split.
Then what occurs with the whole plane \mathbb{C} ?

Answer (by Riemann):
Glue $(\mathbb{C} \backslash\{0\})_{+} \&(\mathbb{C} \backslash\{0\})_{-}(=$two copies of $\mathbb{C} \backslash\{0\})$ as follows:

Motion of $z=r e^{i \varphi}(r>0, \varphi \in[0,2 \pi])$:
1 . When $\varphi \leqq \pi, z$ moves on the upper plane.
2. When φ exceeds π, z transfers to the lower plane.
3. When $\varphi=2 \pi, z$ does not come back to the start!

$$
\varphi=0 \leftrightarrow(z,+) \rightsquigarrow(z,-) \leftrightarrow \varphi=2 \pi
$$

Correspondingly, when $z=r e^{i(\varphi+\theta)}(0 \leqq \theta \leqq 2 \pi)$ moves arround 0 :

$$
\sqrt{z}=\sqrt{r} e^{i \varphi / 2} \xrightarrow{0 \leqq \theta \leqq 2 \pi} \sqrt{z}=-\sqrt{r} e^{i \varphi / 2} .
$$

Summarising: \sqrt{z} should be defined on
$\mathcal{R}:=$
$\sqrt{z}:$

$$
\begin{gathered}
(\mathbb{C} \backslash\{0\})_{+} \\
\sqrt{r} e^{i \varphi / 2}
\end{gathered}
$$

$$
\begin{array}{ccc}
\{0\} & \cup & (\mathbb{C} \backslash\{0\})_{-} \\
0 & & -\sqrt{r} e^{i \varphi / 2}
\end{array}
$$

This \mathcal{R} is the Riemann surface of \sqrt{z}. ... quite "hand-made".

- Systematic construction of the Riemann surface:

Points of $\mathcal{R}:(z, \pm) \rightsquigarrow\left(z, w= \pm \sqrt{z}= \pm \sqrt{r} e^{i \varphi / 2}\right)$.

$$
\mathcal{R}:=\left\{(z, w) \mid F(z, w):=w^{2}-z=0\right\} \subset \mathbb{C}^{2}
$$

- 0 is naturally included in \mathcal{R} as $(0,0)$.
- \mathcal{R} has natural topology as a subset of \mathbb{C}^{2}.
- \mathcal{R} is a one-dimensional complex manifold.
- Review: manifold
X : real ($C^{r}-$)manifold
- X : Hausdorff space.
- $\left\{\left(U_{\lambda}, \phi_{\lambda}\right)\right\}_{\lambda \in \Lambda}$: atlas of X, i.e.,

$$
\begin{gathered}
U_{\lambda} \subset X: \text { open, } \bigcup_{\lambda \in \Lambda} U_{\lambda}=X, \\
\phi_{\lambda}: U_{\lambda} \rightarrow V_{\lambda} \in \mathbb{R}^{N}: \text { homeomorphism }
\end{gathered}
$$

- $\phi_{\lambda} \circ \phi_{\mu}^{-1}: \phi_{\mu}\left(U_{\lambda} \cap U_{\mu}\right) \rightarrow \phi_{\lambda}\left(U_{\lambda} \cap U_{\mu}\right): C^{r}$-diffeomorphism.

Complex manifold: $\mathbb{R} \rightsquigarrow \mathbb{C}, C^{r}$-diffeomorphism \rightsquigarrow holomorphic bijection.

Theorem:

Assumptions:

- $F(z, w)$: polynomial.
- $\left(F, \frac{\partial F}{\partial z}, \frac{\partial F}{\partial w}\right) \neq(0,0,0)$ on a domain $U \subset \mathbb{C}^{2}$.

Then $\{(z, w) \mid F(z, w)=0\} \cap U$ is a one-dimensional complex manifold (possibly non-connected).

Remark:

May assume that $F(z, w)$ is a holomorphic function in (z, w).
We use only the polynomial case.

Lemma: (Holomorphic implicit function theorem)
$F(z, w):$ as above. Assume $F\left(z_{0}, w_{0}\right)=0, \frac{\partial F}{\partial w}\left(z_{0}, w_{0}\right) \neq 0$.
Then,

- $\exists r, \rho>0$ such that

$$
\left\{(z, w) \left\lvert\, \begin{array}{c}
\left|z-z_{0}\right|<r,\left|w-w_{0}\right|<\rho \\
F(z, w)=0
\end{array}\right.\right\} \ni(z, w) \mapsto z \in\left\{z\left|\left|z-z_{0}\right|<r\right\}\right.
$$

is bijective.

- the component $\varphi(z)$ of the inverse map $z \mapsto(z, \varphi(z))$ is holomorphic.

Obvious from the implicit function theorem in the real analysis?
... No. One has to prove that $\varphi(z)$ is holomorphic.

Proof:

$f(w):=F\left(z_{0}, w\right): f\left(w_{0}\right)=0, f^{\prime}\left(w_{0}\right) \neq 0$ by assumption.
$\Longrightarrow f$ has only one zero in a neighbourhood of w_{0} :

$$
\text { (number of zeros in } \left.\left|w-w_{0}\right|<\rho\right)=\frac{1}{2 \pi i} \oint_{\left|w-w_{0}\right|=\rho} \frac{f^{\prime}(w)}{f(w)} d w=1
$$

for sufficiently small ρ.
In general, if $\left|z-z_{0}\right|$ is so small that $F(z, w) \neq 0$ on $\left\{w\left|\left|w-w_{0}\right|=\rho\right\}\right.$,

$$
\begin{aligned}
N(z) & :=\sharp\left\{w\left|F(z, w)=0,\left|w-w_{0}\right|<\rho\right\}\right. & & (\Rightarrow N(z) \in \mathbb{Z}) \\
& =\frac{1}{2 \pi i} \oint_{\left|w-w_{0}\right|=\rho} \frac{\frac{\partial F}{\partial w}(z, w)}{F(z, w)} d w . & & (\Rightarrow N(z) \text { is continuous in } z .)
\end{aligned}
$$

$\Longrightarrow N(z)$: locally constant.
We know $N\left(z_{0}\right)=1 . \Longrightarrow N(z)=1$ if $\left|z-z_{0}\right|<r(r$: small).

This means that the projection

$$
\left\{(z, w) \left\lvert\, \begin{array}{c}
\left|z-z_{0}\right|<r,\left|w-w_{0}\right|<\rho \\
F(z, w)=0
\end{array}\right.\right\} \ni(z, w) \mapsto z \in\left\{z\left|\left|z-z_{0}\right|<r\right\}\right.
$$

is bijective.

$$
z \mapsto(z, \varphi(z)): \text { the inverse map, i.e., } F(z, \varphi(z))=0 \text {. }
$$

Formula in Complex Analysis:

- $g(w), \psi(w)$: holomorphic on a neighbourhood of $\left\{w\left|\left|w-w_{0}\right| \leqq \rho\right\}\right.$,
- $g(w) \neq 0$: on $\left\{w\left|\left|w-w_{0}\right|=\rho\right\}\right.$,

Then

$$
\sum_{\substack{w_{i}: g\left(w_{i}\right)=0 \\\left|w_{i}-w_{0}\right|<\rho}} \psi\left(w_{i}\right)=\frac{1}{2 \pi i} \oint_{\left|w-w_{0}\right|=\rho} \frac{g^{\prime}(w)}{g(w)} \psi(w) d w .
$$

Apply this formula to $g(w)=F(z, w)$ and $\psi(w)=w$:

$$
\varphi(z)=\frac{1}{2 \pi i} \oint_{\left|w-w_{0}\right|=\rho} \frac{\frac{\partial F}{\partial w}(z, w)}{F(z, w)} w d w
$$

Integrand depends on z holomorphically. $\Longrightarrow \varphi(z)$: holomorphic. $\frac{\partial F}{\partial w}\left(z_{0}, w_{0}\right) \neq 0 \Longrightarrow z:$ a coordinate of $\mathcal{R}=\{F(z, w)=0\}$ near $\left(z_{0}, w_{0}\right)$:

$\frac{\partial F}{\partial z}\left(z_{0}, w_{0}\right) \neq 0 \Longrightarrow w:$ a coordinate of $\mathcal{R}=\{F(z, w)=0\}$ near $\left(z_{0}, w_{0}\right)$.
$\frac{\partial F}{\partial w}\left(z_{0}, w_{0}\right) \neq 0$ and $\frac{\partial F}{\partial z}\left(z_{0}, w_{0}\right) \neq 0 \Longrightarrow z \& w$ can be a coordinate.
Coordinate changes: $z \mapsto w=\varphi(z), w \mapsto z=\varphi^{-1}(w)$ are holomorphic.
(Recall: the inverse of a holomorphic function is holomorphic.)

Summarising,
$\mathcal{R}=\{(z, w) \mid F(z, w)=0\}:$ one-dimensional complex manifold.

In algebraic geometry, it is called a non-singular algebraic curve:

- "non-singular": no singular points, where $\frac{\partial F}{\partial w}=\frac{\partial F}{\partial z}=0$.
- "algebraic": F is a polynomial.
- "curve": one-dimensional over \mathbb{C}.

Example: $F(z, w)=w^{2}-z, \mathcal{R}=\left\{(z, w) \mid w^{2}=z\right\}$.

$$
\frac{\partial F}{\partial w}=2 w, \quad \frac{\partial F}{\partial z}=-1 .
$$

Hence,

- z : coordinate except at $(z, w)=(0,0)$.
- w : coordinate everywhere.

The function \sqrt{z} on $\mathcal{R}:(z, w) \mapsto w$.
Defined everwhere! and holomorphic even at $z=0$!

Riemann surface of $\sqrt{1-z^{2}}$.
$f(z):=\sqrt{1-z^{2}}=\sqrt{(1-z)(1+z)}$

- changes its sign when z goes around +1 or -1 .
- does not change its sign when z goes aound both +1 and -1 .

\Longrightarrow Riemann surface of $f(z)=$ two \mathbb{C} 's cut along $[-1,+1]$ glued together.

$$
\mathcal{R}=(\mathbb{C} \backslash\{ \pm 1\})_{+} \cup\{-1,+1\} \cup(\mathbb{C} \backslash\{ \pm 1\})_{-} .
$$

Another definition: $f(z)$ satisfies $f(z)^{2}+z^{2}-1=0$. So,

$$
\mathcal{R}=\left\{(z, w) \mid F(z, w):=z^{2}+w^{2}-1=0\right\} .
$$

Since

$$
\frac{\partial F}{\partial w}=2 w, \quad \frac{\partial F}{\partial z}=2 z,
$$

- z is a coordinate around $\left(z_{0}, w_{0}\right), w_{0} \neq 0$, i.e., $z_{0} \neq \pm 1$.
- w should be used as a coordinate around $(\pm 1,0)$.

The function $f(z)=\sqrt{1-z^{2}}$ is defined as

$$
f: \mathcal{R} \ni(z, w) \mapsto w
$$

on \mathcal{R} as a single-valued function.

What surface is \mathcal{R} topologically?
In the picture of \mathcal{R} as glued \mathbb{C} 's:

the interval $[-1,+1]$ seems to be a self-intersection. But it is NOT!
\exists TWO points $(z, w)=\left(z, \pm \sqrt{1-z^{2}}\right)$ for each $z \in[-1,+1]$.
\Longrightarrow Better to glue them with different orientations.

$=$ cylinder!

Recall: we want to study elliptic integrals with complex variables.
Prototype: $\int \frac{d z}{\sqrt{1-z^{2}}}$.
Question: Where does the 1-form $\omega=\frac{d z}{\sqrt{1-z^{2}}}$ live?
Answer: on the Riemann surface \mathcal{R} of $\sqrt{1-z^{2}}$.
There we have to replace $\sqrt{1-z^{2}}$ by $w: \omega=\frac{d z}{w}$.
$\Longrightarrow \omega$ is not defined when $w=0$, i.e., $z= \pm 1$..., NO!
Recall that at $(\pm 1,0) \in \mathcal{R}$ we have to use w as a coordinate.

$$
\begin{gathered}
w^{2}=1-z^{2} \xrightarrow{\frac{d}{d z}} 2 w d w=-2 z d z . \\
\Longrightarrow \omega=\frac{1}{w} d z=\frac{1}{w} \frac{-w d w}{z}=\frac{d w}{z}=\frac{-d w}{\sqrt{1-w^{2}}}: \text { holomorphic at }(\pm 1,0) .
\end{gathered}
$$

$\omega=\frac{d z}{\sqrt{1-z^{2}}}=\frac{d z}{w}=\frac{-d w}{z}$: holomorphic 1-form on the whole \mathcal{R}.
Recall: If $f(z)$ is an entire function (= holomorphic on the whole \mathbb{C}), the indefinite integral

$$
F(z):=\int_{z_{0}}^{z} f\left(z^{\prime}\right) d z^{\prime}
$$

defines a single-valued holomorphic function by virtue of Cauchy's integral theorem: (Figure $z_{0} \xrightarrow{C \rightarrow C^{\prime}} z$)

$$
\int_{C} f(z) d z=\int_{C^{\prime}} f\left(z^{\prime}\right) d z^{\prime}
$$

How about the integral of $\omega=\frac{d z}{\sqrt{1-z^{2}}}$?

Because of the non-trivial topology of $\mathcal{R}, \int_{C} \omega$ depends on C.

For general contours? - Better to use terminology in topology.

The first homology group of a topological space X : (very rough summary)

$H_{1}(X, \mathbb{Z}):=\langle$ Free abelian group generated by closed curves in $X\rangle / \sim$. The equivalence relation: for closed curves C, C^{\prime},

$$
[C] \sim\left[C^{\prime}\right] \Longleftrightarrow C^{-1} C^{\prime}=\bigcup \text { (boundaries of domains). }
$$

(" C and C^{\prime} are homologically equivalent").
Figure: homological equivalence.

- homotopically equivačlent \Longrightarrow homologically equivalent.
- $H_{1}(X, \mathbb{Z})$: an abelian group.

Using this terminology:

$$
\mathcal{R} \sim \text { cylinder } \Longrightarrow H_{1}(\mathcal{R}, \mathbb{Z})=\mathbb{Z}[A] .
$$

Previous examples:

$$
\begin{aligned}
& {\left[C_{1}\right]-\left[C_{0}\right]=[A] \text { in } H_{1}(\mathcal{R}, \mathbb{Z}) \quad \Longrightarrow \quad \int_{C_{1}} \omega-\int_{C_{0}} \omega=\int_{A} \omega .} \\
& {\left[C_{2}\right]-\left[C_{0}\right]=-[A] \text { in } H_{1}(\mathcal{R}, \mathbb{Z}) \quad \Longrightarrow \quad \int_{C_{1}} \omega-\int_{C_{0}} \omega=-\int_{A} \omega .}
\end{aligned}
$$

In general,

$$
\begin{aligned}
{[C(P \rightarrow Q)]-\left[C_{0}\right] } & \in H_{1}(\mathcal{R}, \mathbb{Z})=\mathbb{Z}[A] \\
& \Longrightarrow \int_{C(P \rightarrow Q)} \omega-\int_{C_{0}} \omega=n \int_{A} \omega, \quad n \in \mathbb{Z}
\end{aligned}
$$

$\int_{A} \omega$: period of 1 -form ω over A.
Shrink A to $A_{0}: \int_{A} \omega=\int_{A_{0}} \omega$.
(Figure of A_{0} : sign of $\sqrt{1-x^{2}}$ are different on each half plane.)

$$
\begin{aligned}
\int_{A_{0}} \omega & =\int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}}+\int_{1}^{-1} \frac{-d x}{\sqrt{1-x^{2}}} \\
& =\left.\arcsin x\right|_{x=-1} ^{x=1}-\left.\arcsin x\right|_{x=1} ^{x=-1} \\
& =\left(\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)\right)-\left(\left(-\frac{\pi}{2}\right)-\frac{\pi}{2}\right)=2 \pi
\end{aligned}
$$

When P moves from $x \in \mathbb{C}$ and comes back to x,

$$
u(P)=\int_{0}^{P} \omega
$$

changes by $2 \pi \times$ (integer): $u(x) \rightsquigarrow u(x)+2 \pi n, n \in \mathbb{Z}$.
\Longleftrightarrow the inverse function $x(u)$ of $u(x)$ has period 2π :

$$
x(u+2 \pi n)=x(u), \quad n \in \mathbb{Z}
$$

In fact,

$$
u(x)=\int_{0}^{x} \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x, \quad x(u)=\sin u
$$

" $\sin u$ is periodic because of the topology of the cylinder!"

