Elliptic Functions

Riemann surfaces of algebraic functions.



§4.1 Riemann surface of algebraic functions.

Hitherto: elliptic integrals and elliptic functions (mainly) over R.

Let us complexify the theories!

Want: integrals of R(x,/¢(x)) on C.
— A problem of multi-valuedness (branches) of \/y(x) occurs.



The simplest case: +/z.

What is \/z? — “w which satisfies w? = 2".

Then /z cannot be uniquely determined: if w? = z, then (—w)? = 2.

Where does this “—" sign come from?
z=re (r =|z|, § = arg z; polar form) = /z = /re??/2.
e For r € Ryg, +/r > 0 is uniquely determined.
e 0 = argz is NOT unique! arg z is determined only up to 27Z:

5 — 7“67'0 _ Tez(@:l:%r) _ Te’b(@ﬂ:47‘(‘) L r62(9-|—2n7r).

Correspondingly,

\/g _ \/;ez'(9—|—2n7r)/2 _ \/;6759+in7r _ (_1)71\/7’46@'9.



Two solutions to the multi-valuedness problem:

1. Restrict the range of arg (e.g., —m < argz < 7).

— Not convenient, for example, to consider y/z on a curve around O.
(cf. Figure.) The range is arbitrarily chosen.
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2. Double the domain of definition (Riemann's idea):
Assign two “points” (z,+) and (z,—) to each z # 0.
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D: “small” domain, 0 ¢ D. = D splits to D and D_.

® -
\D

VG H) = e,
V) = — e

z=re? (0 € (—m,7]) — {

How about z = 0? Since v/0 = 0 is unique, it should not be split.

Then what occurs with the whole plane C?



Answer (by Riemann):

Glue (C . {0})+ & (C~ {0})— (= two copies of C \ {0}) as follows:

\(Za\—i_) C
0 :




Motion of z = re¥ (r > 0, ¢ € [0, 27]):
1. When ¢ < 7, z moves on the upper plane.
2. When ¢ exceeds m, z transfers to the lower plane.
3. When ¢ = 27, 2z does not come back to the start!
=0 (2,+) ~ (2,—) <> =27
Correspondingly, when z = 7€/ (¢*9) (0 < 6 < 27) moves arround 0:

V7 = Vel VE = e

0027




Summarising: +/z should be defined on
R = (C~A{0})+ U {0} U (C~{0})—
NCE \/;ewm 0 _\/7762'4/9/2

This R is the Riemann surface of \/z. ... quite “hand-made”.



e Systematic construction of the Riemann surface:

Points of R: (2, +) ~ (z,w = /2 = £/re’?/?).

R :={(z,w) | F(z,w) := w® — z =0} C C°

e ( is naturally included in R as (0,0).
e R has natural topology as a subset of C?.

e R is a one-dimensional complex manifold.



e Review: manifold

X: real (C"-)manifold

e X: Hausdorff space.
° {(U)\,¢)\)})\€AZ atlas of X, i.e.,

Uy C X : open, UUA:X,
AEA

oy : Uy — V) € RY - homeomorphism

o Pro ¢ Pu(UxNU,) = oA(UxNU,): CT-diffeomorphism.
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$1(U1)
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Complex manifold: R ~» C, C"-diffeomorphism ~~ holomorphic bijection.

Theorem:

Assumptions:

e F(z,w): polynomial.

OF OF | ,
o (F, &z’@w) # (0,0,0) on a domain U C C~.

Then {(z,w) | F(z,w) =0} NU is a one-dimensional complex manifold
(possibly non-connected). []

Remark:

May assume that F'(z,w) is a holomorphic function in (z, w).

We use only the polynomial case.
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Lemma: (Holomorphic implicit function theorem)

oF
F(z,w): as above. Assume F'(zgp,wq) = 0, 8—(20’w0) # 0.
w

Then,

e Jr,p > 0 such that

o)

is bijective.

|z — 20| < 7y |lw—wp| < p
F(z,w)=0

}9 (z,w) — z€{z||z—20] <1}

e the component ¢(z) of the inverse map z — (2, p(2)) is holomorphic.

[]

Obvious from the implicit function theorem in the real analysis?
... No. One has to prove that ((z) is holomorphic.
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Proof:
f(w) := F(z0,w): f(wg) =0, f'(wg) # 0 by assumption.

—> f has only one zero in a neighbourhood of wy:

. 1 f'(w)
(number of zeros in |w — wy| < p) = — j{ dw =1
PALY) |lw—wo|=p f(w)

for sufficiently small p.
In general, if |z — zg| is so small that F'(z,w) # 0 on {w | |lw — wg| = p},

N(z) =t#{w| F(z,w) =0, |lw—wy| < p} (= N(z) € Z)

1 9 (z,w . .
- ouw (7 0) dw. (= N(z) is continuous in z.)
2700 Jjwy—wo|=p (2, W)

—> N(2): locally constant.
We know N(zp) =1. = N(z) =11if |z — 29| <7 (7: small).
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This means that the projection

{0

Is bijective.

|z — 20| < 7y Jw—wp| < p
F(z,w)=0

}B(Z,w)lézé{z\\z—zo<r}

2z (2,0(2)) : the inverse map, i.e., F'(z,p(z2)) = 0.

Formula in Complex Analysis:

e g(w), ¥(w): holomorphic on a neighbourhood of {w | [w — wg| < p},

e g(w) #0: on {w | |w—wo| = p},
Then
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Apply this formula to g(w) = F(z,w) and ¥ (w) = w:

1 OF (o w)
p(z) = —]{ Jw w dw.
2700 Jjw—wwo|=p (2, w)

Integrand depends on z holomorphically. = ©(z): holomorphic. []

OF
8_(20,100) #+ 0 = z: a coordinate of R = {F(z,w) = 0} near (zg, wp):
w

(2,0 = ¢(2))

o / R ew =9

(20, wo) //

one-to-one corresp ondence

20 z=¢ H(w)

OF
G—(ZO’wO) # 0 = w: a coordinate of R = {F(z,w) = 0} near (zg,wp).
Z
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OF oF
— (20, wp) # 0 and —(zp, wp) # 0 = 2z & w can be a coordinate.

ow 0z
Coordinate changes: 2z — w = ¢(z), w — 2z = ¢~ 1 (w) are holomorphic.

(Recall: the inverse of a holomorphic function is holomorphic.)

Summarising,

R ={(z,w) | F(z,w) = 0}: one-dimensional complex manifold. []

In algebraic geometry, it is called a non-singular algebraic curve:

X - 1 . . aF aF
e ‘non-singular’: no singular points, where — = — = 0.
ow 0z

e “algebraic’: F'is a polynomial.

e ‘curve’: one-dimensional over C.
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Example: F(z,w) =w* — 2z, R = {(z,w) | w* = z}.

oF _
ow

OF

2 — = —1.
“ 0z

Hence,
e z: coordinate except at (z,w) = (0,0).
e w: coordinate everywhere.

The function \/z on R: (z,w) — w.

Defined everwhere! and holomorphic even at z = 0!
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Riemann surface of /1 — 22,

f(z) =vVI=22= /T~ 2)(1+2)
e changes its sign when z goes around +1 or —1.

e does not change its sign when z goes aound both +1 and —1.

X(—1) x (=1) = x(+1)

— Riemann surface of f(z) = two C'’s cut along |[—1,+1] glued together.

(2, +)

-1 +1

(z7 _)
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R = (C~ {41}); U{—1,41} U (C~ {£1})_.
Another definition: f(z) satisfies f(2)? + 2% —1 = 0. So,
R ={(z,w) | F(z,w) := 2° + w* — 1 =0}.
Since
oF _ OF _
ow 0z

e 2 is a coordinate around (zg,wp), wo # 0, i.e., zg # *£1.

2w, 2z,

e w should be used as a coordinate around (+£1,0).

The function f(z) = v/1 — z?2 is defined as
f:R>3(z,w) —w

on R as a single-valued function.
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What surface is R topologically?

In the picture of R as glued C's:

the interval [—1,+1] seems to be a self-intersection. But it is NOT!

3 TWO points (z,w) = (z,£v1 — 2?) for each z € [—1, +1].

—> Better to glue them with different orientations.
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(Figure of gluw/ w 7

1
\f"‘“ '—-ﬂs ‘
P —— —
-1
o
- _
= cylinder!
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Recall: we want to study elliptic integrals with complex variables.

\/ V 1 /Z
y . [l

Question: Where does the 1-form w = live?

V1 — 22
Answer: on the Riemann surface R of v1 — 22,

d
There we have to replace V1 — 22 by w: w = il
w
— w is not defined when w =0, i.e., z = £1. ..., NO!

Recall that at (£1,0) € R we have to use w as a coordinate.

d

w2 =1 — 22— 2wdw = —22dz.

1 1l —wdw  dw —dw
— w=—dz=— = —

w wo oz P V1 — w2
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= . holomorphic at (+1,0).



W = dz  _dz = —dw: holomorphic 1-form on the whole R.

VI—22 w 2

Recall: If f(z) is an entire function (= holomorphic on the whole C), the

indefinite integral
F(z) ::/ f(z")dz
20

defines a single-valued holomorphic function by virtue of Cauchy’s integral

: C—C’
theorem: (Figure zp —— 2)

/ f(z)dz = f(2")dz".
C C’

. dz
How about the integral of w = ? %

V1—22
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Because of the non-trivial topology of R, / w depends on C.
C

/ w: (Figure of () +Q
Co \Co p Cb

P ] w
-
~

e — 41

/ w: (Figure of C1)
Ch 9

Ch Co A
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/ w: (Figure of C5)
Co

For general contours? — Better to use terminology in topology.
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The first homology group of a topological space X: (very rough summary)

H1(X,7Z) := (Free abelian group generated by closed curves in X) / ~ .
The equivalence relation: for closed curves C, C’,
C] ~ [0 = C71C' = U(boundaries of domains).

(“C and C’ are homologically equivalent™).

Figure: homological equivalence.

~ C+C

e homotopically equivalent = homologically equivalent.

e Hi(X,Z): an abelian group.
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Using this terminology:

R ~ cylinder = H(R,Z) = Z[A].

o do= L

R
Oy — [Col = —[A] in Hy(R.Z) — /Clw /Cow —/Aw.

Previous examples:

[C1] = [Co] = [A] in Hi(R,Z)

In general,

C(P — Q)]-[Co] € HI(R,Z) = Z[A]

:>/ w—/w:n/w, n € 7
C(P—Q) Co A
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/ w: period of 1-form w over A.
A

Shrink A to Ap: /w:/ W
A Ao

(Figure of Ag: sign of /1 — x2 are different on each half plane.)

/ Y /1 de | /1 —dz
Ao \/1—:1:2 V11— x?
r=—1

= arcsinx|,__, — arcsinz|;

-9
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When P moves from 2z € C and comes back to z,

changes by 27 (integer): u(z) ~> u(x) + 27n, n € Z.

<= the inverse function x(u) of u(x) has period 27

r(u 4+ 2mn) = x(u), n € 7.

In fact,

T
d
u(x) = / ~__ — arcsin T, x(u) = sin u.
0

V1 —z?

“sin u is periodic because of the topology of the cylinder!”
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