Elliptic Functions

Riemann surfaces of algebraic functions.

§4.1 Riemann surface of algebraic functions.

Hitherto: elliptic integrals and elliptic functions (mainly) over \mathbb{R} .

Let us *complexify* the theories!

Want: integrals of $R(x, \sqrt{\varphi(x)})$ on \mathbb{C} .

 \longrightarrow A problem of multi-valuedness (branches) of $\sqrt{\varphi(x)}$ occurs.

The simplest case: \sqrt{z} .

What is \sqrt{z} ? — "w which satisfies $w^2 = z$ ".

Then \sqrt{z} cannot be uniquely determined: if $w^2 = z$, then $(-w)^2 = z$.

Where does this "—" sign come from?

 $z = re^{i\theta}$ (r = |z|, $\theta = \arg z$; polar form) $\Longrightarrow \sqrt{z} = \sqrt{r}e^{i\theta/2}$.

• For $r \in \mathbb{R}_{>0}$, $\sqrt{r} > 0$ is uniquely determined.

• $\theta = \arg z$ is NOT unique! $\arg z$ is determined only up to $2\pi\mathbb{Z}$:

$$z = re^{i\theta} = re^{i(\theta \pm 2\pi)} = re^{i(\theta \pm 4\pi)} = \dots = re^{i(\theta + 2n\pi)}$$

Correspondingly,

$$\sqrt{z} = \sqrt{r}e^{i(\theta + 2n\pi)/2} = \sqrt{r}e^{i\theta + in\pi} = (-1)^n \sqrt{r}e^{i\theta}.$$

Two solutions to the multi-valuedness problem:

1. Restrict the range of arg (e.g., $-\pi < \arg z \leq \pi$).

— Not convenient, for example, to consider \sqrt{z} on a curve around 0. (cf. Figure.) The range is arbitrarily chosen.

Double the domain of definition (Riemann's idea):
 Assign two "points" (z, +) and (z, −) to each z ≠ 0.

D: "small" domain, $0 \notin D$. $\Longrightarrow D$ splits to D_+ and D_- .

$$z = re^{i\theta} \ (\theta \in (-\pi, \pi]) \longrightarrow \begin{cases} \sqrt{(z, +)} = +\sqrt{r}e^{i\theta/2}, \\ \sqrt{(z, -)} = -\sqrt{r}e^{i\theta/2}. \end{cases}$$

How about z = 0? Since $\sqrt{0} = 0$ is unique, it should not be split.

Then what occurs with the whole plane \mathbb{C} ?

Answer (by Riemann):

Glue $(\mathbb{C} \setminus \{0\})_+ \& (\mathbb{C} \setminus \{0\})_-$ (= two copies of $\mathbb{C} \setminus \{0\}$) as follows:

Motion of $z = re^{i\varphi}$ $(r > 0, \varphi \in [0, 2\pi])$:

- 1. When $\varphi \leq \pi$, z moves on the upper plane.
- 2. When φ exceeds π , z transfers to the lower plane.
- 3. When $\varphi = 2\pi$, z does not come back to the start!

$$\varphi = 0 \leftrightarrow (z, +) \rightsquigarrow (z, -) \leftrightarrow \varphi = 2\pi$$

Correspondingly, when $z = re^{i(\varphi+\theta)}$ ($0 \leq \theta \leq 2\pi$) moves arround 0:

$$\sqrt{z} = \sqrt{r}e^{i\varphi/2} \xrightarrow{0 \leq \theta \leq 2\pi} \sqrt{z} = -\sqrt{r}e^{i\varphi/2}.$$

Summarising: \sqrt{z} should be defined on

This \mathcal{R} is the *Riemann surface* of \sqrt{z} quite "hand-made".

• Systematic construction of the Riemann surface:

Points of
$$\mathcal{R}$$
: $(z, \pm) \rightsquigarrow (z, w = \pm \sqrt{z} = \pm \sqrt{r}e^{i\varphi/2}).$
$$\mathcal{R} := \{(z, w) \mid F(z, w) := w^2 - z = 0\} \subset \mathbb{C}^2.$$

- 0 is naturally included in \mathcal{R} as (0,0).
- \mathcal{R} has natural topology as a subset of \mathbb{C}^2 .
- \mathcal{R} is a one-dimensional complex manifold.

- Review: manifold
- X: real (C^r -)manifold
 - X: Hausdorff space.
 - $\{(U_{\lambda}, \phi_{\lambda})\}_{\lambda \in \Lambda}$: atlas of X, i.e.,

 $U_{\lambda} \subset X$: open, $\bigcup_{\lambda \in \Lambda} U_{\lambda} = X$, $\phi_{\lambda} : U_{\lambda} \to V_{\lambda} \in \mathbb{R}^{N}$: homeomorphism

• $\phi_{\lambda} \circ \phi_{\mu}^{-1} : \phi_{\mu}(U_{\lambda} \cap U_{\mu}) \to \phi_{\lambda}(U_{\lambda} \cap U_{\mu}) : C^{r}$ -diffeomorphism.

Complex manifold: $\mathbb{R} \rightsquigarrow \mathbb{C}$, C^r -diffeomorphism \rightsquigarrow holomorphic bijection.

Theorem:

Assumptions:

• F(z,w): polynomial.

•
$$\left(F, \frac{\partial F}{\partial z}, \frac{\partial F}{\partial w}\right) \neq (0, 0, 0)$$
 on a domain $U \subset \mathbb{C}^2$.

Then $\{(z, w) | F(z, w) = 0\} \cap U$ is a one-dimensional complex manifold (possibly non-connected).

<u>Remark</u>:

May assume that F(z, w) is a holomorphic function in (z, w).

We use only the polynomial case.

<u>Lemma</u>: (Holomorphic implicit function theorem)

F(z,w): as above. Assume $F(z_0,w_0) = 0$, $\frac{\partial F}{\partial w}(z_0,w_0) \neq 0$.

Then,

• $\exists r, \rho > 0$ such that

$$\left\{ (z,w) \left| \begin{array}{c} |z-z_0| < r, |w-w_0| < \rho \\ F(z,w) = 0 \end{array} \right\} \ni (z,w) \mapsto z \in \{z \mid |z-z_0| < r\} \right\}$$

is bijective.

• the component $\varphi(z)$ of the inverse map $z \mapsto (z, \varphi(z))$ is holomorphic.

Obvious from the implicit function theorem in the real analysis?

... No. One has to prove that $\varphi(z)$ is holomorphic.

<u>Proof</u>:

 $f(w) := F(z_0, w)$: $f(w_0) = 0$, $f'(w_0) \neq 0$ by assumption.

 \implies f has only one zero in a neighbourhood of w_0 :

(number of zeros in
$$|w - w_0| < \rho$$
) = $\frac{1}{2\pi i} \oint_{|w - w_0| = \rho} \frac{f'(w)}{f(w)} dw = 1$

for sufficiently small ρ .

In general, if $|z - z_0|$ is so small that $F(z, w) \neq 0$ on $\{w \mid |w - w_0| = \rho\}$, $N(z) := \sharp\{w \mid F(z, w) = 0, |w - w_0| < \rho\}$ $(\Rightarrow N(z) \in \mathbb{Z})$ $= \frac{1}{2\pi i} \oint_{|w - w_0| = \rho} \frac{\frac{\partial F}{\partial w}(z, w)}{F(z, w)} dw.$ $(\Rightarrow N(z) \text{ is continuous in } z.)$

 $\implies N(z)$: locally constant.

We know $N(z_0) = 1$. $\implies N(z) = 1$ if $|z - z_0| < r$ (r: small).

This means that the projection

$$\left\{ (z,w) \left| \begin{array}{c} |z-z_0| < r, |w-w_0| < \rho \\ F(z,w) = 0 \end{array} \right\} \ni (z,w) \mapsto z \in \{ z \mid |z-z_0| < r \} \right\}$$

is bijective.

$$z\mapsto (z, \varphi(z)):$$
 the inverse map, i.e., $F(z, \varphi(z))=0.$

Formula in Complex Analysis:

• g(w), $\psi(w)$: holomorphic on a neighbourhood of $\{w \mid |w - w_0| \leq \rho\}$,

•
$$g(w) \neq 0$$
: on $\{w \mid |w - w_0| = \rho\}$,

Then

$$\sum_{\substack{w_i:g(w_i)=0\\|w_i-w_0|<\rho}} \psi(w_i) = \frac{1}{2\pi i} \oint_{|w-w_0|=\rho} \frac{g'(w)}{g(w)} \psi(w) \, dw.$$

Apply this formula to g(w) = F(z, w) and $\psi(w) = w$:

$$\varphi(z) = \frac{1}{2\pi i} \oint_{|w-w_0|=\rho} \frac{\frac{\partial F}{\partial w}(z,w)}{F(z,w)} w \, dw.$$

Integrand depends on z holomorphically. $\implies \varphi(z)$: holomorphic. $\frac{\partial F}{\partial w}(z_0, w_0) \neq 0 \implies z$: a coordinate of $\mathcal{R} = \{F(z, w) = 0\}$ near (z_0, w_0) :

 $\frac{\partial F}{\partial z}(z_0, w_0) \neq 0 \Longrightarrow w: \text{ a coordinate of } \mathcal{R} = \{F(z, w) = 0\} \text{ near } (z_0, w_0).$

 $\frac{\partial F}{\partial w}(z_0, w_0) \neq 0$ and $\frac{\partial F}{\partial z}(z_0, w_0) \neq 0 \implies z \& w$ can be a coordinate. Coordinate changes: $z \mapsto w = \varphi(z), w \mapsto z = \varphi^{-1}(w)$ are holomorphic. (Recall: the inverse of a holomorphic function is holomorphic.)

Summarising,

 $\mathcal{R} = \{(z, w) \mid F(z, w) = 0\}$: one-dimensional complex manifold.

In algebraic geometry, it is called a *non-singular algebraic curve*:

- "non-singular": no singular points, where $\frac{\partial F}{\partial w} = \frac{\partial F}{\partial z} = 0$.
- "algebraic": F is a polynomial.
- "curve": one-dimensional over \mathbb{C} .

Example:
$$F(z,w) = w^2 - z$$
, $\mathcal{R} = \{(z,w) \mid w^2 = z\}$.

$$\frac{\partial F}{\partial w} = 2w, \qquad \frac{\partial F}{\partial z} = -1.$$

Hence,

- z: coordinate except at (z, w) = (0, 0).
- w: coordinate everywhere.

The function \sqrt{z} on \mathcal{R} : $(z, w) \mapsto w$.

Defined everwhere! and holomorphic even at z = 0!

Riemann surface of $\sqrt{1-z^2}$.

$$f(z) := \sqrt{1 - z^2} = \sqrt{(1 - z)(1 + z)}$$

- changes its sign when z goes around +1 or -1.
- does not change its sign when z goes abound <u>both</u> +1 and -1.

 \implies Riemann surface of f(z) =two \mathbb{C} 's cut along [-1, +1] glued together.

$$\mathcal{R} = (\mathbb{C} \setminus \{\pm 1\})_+ \cup \{-1, +1\} \cup (\mathbb{C} \setminus \{\pm 1\})_-.$$

Another definition: f(z) satisfies $f(z)^2 + z^2 - 1 = 0$. So,

$$\mathcal{R} = \{ (z, w) \mid F(z, w) := z^2 + w^2 - 1 = 0 \}.$$

Since

$$\frac{\partial F}{\partial w} = 2w, \qquad \frac{\partial F}{\partial z} = 2z,$$

- z is a coordinate around (z_0, w_0) , $w_0 \neq 0$, i.e., $z_0 \neq \pm 1$.
- w should be used as a coordinate around $(\pm 1, 0)$.

The function $f(z) = \sqrt{1-z^2}$ is defined as

$$f: \mathcal{R} \ni (z, w) \mapsto w$$

on \mathcal{R} as a *single-valued* function.

What surface is \mathcal{R} topologically?

In the picture of \mathcal{R} as glued \mathbb{C} 's:

the interval [-1, +1] seems to be a self-intersection. But it is NOT!

- \exists TWO points $(z, w) = (z, \pm \sqrt{1 z^2})$ for each $z \in [-1, +1]$.
- \implies Better to glue them with different orientations.

= cylinder!

Recall: we want to study elliptic integrals with complex variables.

Prototype: $\int \frac{dz}{\sqrt{1-z^2}}$.

Question: Where does the 1-form $\omega = \frac{dz}{\sqrt{1-z^2}}$ live? <u>Answer</u>: on the Riemann surface \mathcal{R} of $\sqrt{1-z^2}$. There we have to replace $\sqrt{1-z^2}$ by w: $\omega = \frac{dz}{w}$. $\Rightarrow \omega$ is not defined when w = 0, i.e., $z = \pm 1$, NO!

Recall that at $(\pm 1, 0) \in \mathcal{R}$ we have to use w as a coordinate.

$$w^2 = 1 - z^2 \xrightarrow{\frac{d}{dz}} 2wdw = -2zdz.$$

$$\implies \omega = \frac{1}{w}dz = \frac{1}{w}\frac{-w\,dw}{z} = \frac{dw}{z} = \frac{-dw}{\sqrt{1-w^2}}: \text{ holomorphic at } (\pm 1, 0).$$

$$\omega = \frac{dz}{\sqrt{1-z^2}} = \frac{dz}{w} = \frac{-dw}{z}$$
: holomorphic 1-form on the whole \mathcal{R} .

Recall: If f(z) is an entire function (= holomorphic on the whole \mathbb{C}), the indefinite integral

$$F(z) := \int_{z_0}^z f(z') \, dz'$$

defines a single-valued holomorphic function by virtue of Cauchy's integral theorem: (Figure $z_0 \xrightarrow{C \to C'} z$)

$$\int_C f(z) \, dz = \int_{C'} f(z') \, dz'$$

How about the integral of $\omega = \frac{dz}{\sqrt{1-z^2}}$?

$$\Longrightarrow \int_{C_1} \omega - \int_{C_0} \omega = \int_A \omega.$$

For general contours? — Better to use terminology in topology.

The first homology group of a topological space X: (very rough summary)

 $H_1(X,\mathbb{Z}) := \langle \text{Free abelian group generated by closed curves in } X \rangle / \sim$.

The equivalence relation: for closed curves C, C',

$$[C] \sim [C'] \iff C^{-1}C' = \bigcup$$
 (boundaries of domains).

("C and C' are homologically equivalent").

Figure: homological equivalence.

- homotopically equivalent \implies homologically equivalent.
- $H_1(X,\mathbb{Z})$: an abelian group.

Using this terminology:

$$\mathcal{R} \sim \text{ cylinder } \Longrightarrow H_1(\mathcal{R}, \mathbb{Z}) = \mathbb{Z}[A].$$

Previous examples:

$$[C_1] - [C_0] = [A] \text{ in } H_1(\mathcal{R}, \mathbb{Z}) \qquad \Longrightarrow \qquad \int_{C_1} \omega - \int_{C_0} \omega = \int_A \omega.$$
$$[C_2] - [C_0] = -[A] \text{ in } H_1(\mathcal{R}, \mathbb{Z}) \qquad \Longrightarrow \qquad \int_{C_1} \omega - \int_{C_0} \omega = -\int_A \omega.$$

In general,

$$[C(P \to Q)] - [C_0] \in H_1(\mathcal{R}, \mathbb{Z}) = \mathbb{Z}[A]$$
$$\implies \int_{C(P \to Q)} \omega - \int_{C_0} \omega = n \int_A \omega, \quad n \in \mathbb{Z}$$

$$\int_{A} \omega: \text{ period of } 1\text{-form } \omega \text{ over } A.$$

Shrink
$$A$$
 to A_0 : $\int_A \omega = \int_{A_0} \omega.$

(Figure of A_0 : sign of $\sqrt{1-x^2}$ are different on each half plane.)

$$\int_{A_0} \omega = \int_{-1}^1 \frac{dx}{\sqrt{1 - x^2}} + \int_{1}^{-1} \frac{-dx}{\sqrt{1 - x^2}}$$
$$= \arcsin x |_{x=-1}^{x=1} - \arcsin x |_{x=1}^{x=-1}$$
$$= \left(\frac{\pi}{2} - \left(-\frac{\pi}{2}\right)\right) - \left(\left(-\frac{\pi}{2}\right) - \frac{\pi}{2}\right) = 2\pi.$$

When P moves from $x \in \mathbb{C}$ and comes back to x,

$$u(P) = \int_0^P \omega$$

changes by $2\pi \times (\text{integer})$: $u(x) \rightsquigarrow u(x) + 2\pi n$, $n \in \mathbb{Z}$.

 \iff the inverse function x(u) of u(x) has period 2π :

$$x(u+2\pi n) = x(u), \qquad n \in \mathbb{Z}.$$

In fact,

$$u(x) = \int_0^x \frac{dx}{\sqrt{1 - x^2}} = \arcsin x, \qquad x(u) = \sin u.$$

" $\sin u$ is periodic because of the topology of the cylinder!"