Elliptic Functions

Abel-Jacobi theorem

§7.1 Abel-Jacobi theorem

Recall: periods of $\omega_{1}=\frac{d z}{\sqrt{\varphi(z)}}=\frac{d z}{w}$ belong to $\Gamma:=\mathbb{Z} \Omega_{A}+\mathbb{Z} \Omega_{B}$:

$$
\Omega_{A}:=\int_{A} \omega_{1}, \quad \Omega_{B}:=\int_{B} \omega_{1} .
$$

\Longrightarrow The Abel-Jacobi map:

$$
A J: \overline{\mathcal{R}} \ni P \mapsto \int_{P_{0}}^{P} \omega_{1} \bmod \Gamma \in \mathbb{C} / \Gamma
$$

is well-defined. (P_{0} : a fixed point in $\overline{\mathcal{R}}$.)

Remark: There is an "Abel-Jacobi map" associated to any compact Riemann surface. The above $A J$ is a special case.

Theorem (Abel-Jacobi theorem)
(i) The Abel-Jacobi map $A J$ is bijective.
(ii) It is an isomorphism of complex manifolds between $\overline{\mathcal{R}}$ and \mathbb{C} / Γ.

Proof of $(\mathrm{ii}) \Longleftarrow(\mathrm{i}):$

- $A J$ is holomorphic (\Leftarrow definition).
- Complex analysis:

The inverse map of a holomorphic bijection is holomorphic.

The essential part of the theorem is bijectivity (i).

§7.2 Surjectivity of $A J$ (Jacobi's theorem)

Recall:

- The image of a compact set by a continuous map is compact.
- A compact subset of a Hausdorff space is closed.

On the other hand,

- A holomorphic map is open, i.e., the image of an open set is open.
$\Longrightarrow A J(\overline{\mathcal{R}})$ is open in \mathbb{C} / Γ.
$A J(\overline{\mathcal{R}})$ is closed \& open in \mathbb{C} / Γ.
$\Longrightarrow A J(\overline{\mathcal{R}})$ is a connected component of \mathbb{C} / Γ.
But \mathbb{C} / Γ is connected!
Hence,

$$
A J(\overline{\mathcal{R}})=\mathbb{C} / \Gamma .
$$

Corollary:

Ω_{A} and Ω_{B} are linearly independent over \mathbb{R}. In particular, $\Omega_{A}, \Omega_{B} \neq 0$.
Proof: $\overline{\mathcal{R}}$: compact $\Longrightarrow \mathbb{C} / \Gamma=A J(\overline{\mathcal{R}})$: compact.
\leftrightarrow If $\Omega_{A} \& \Omega_{B}$: linearly dependent $/ \mathbb{R}, \Gamma=\mathbb{Z} \Omega_{A}+\mathbb{Z} \Omega_{B} \subset \mathbb{R} \Omega_{A}$ or $\mathbb{R} \Omega_{B}$. $\Longrightarrow \mathbb{C} / \Gamma$ is not compact.

§7.3 Injectivity of $A J$ (Abel's theorem)

Assumption: $A J\left(P_{1}\right)=A J\left(P_{2}\right)$, but $P_{1} \neq P_{2}$.
Goal: Construct a meromorphic function $f(z)$ on $\overline{\mathcal{R}}$ such that

- f has a unique pole at P_{2}, which is simple.
- $f(z)=0 \Leftrightarrow z=P_{1}$. (This property will not be used.)

But such f cannot exist!

Because, as ω_{1} is a holomorphic nowhere vanishing differential,

- $f(z) \omega_{1}$ has a simple pole at $P_{2} . \Longrightarrow \int_{C} f(z) \omega_{1} \neq 0$.
- $f(z) \omega_{1}$ is holomoprhic elsewhere. $\Longrightarrow \int_{C} f(z) \omega_{1}=0$.
(C : a small circle around P_{2}; Figure)
Contradiction $\Longrightarrow P_{1}=P_{2}$.

Construction of $f(z)$:
We define $f(z)$ by

$$
f(z):=\exp \left(\int_{Q_{0}}^{z} \omega_{3}\left(P_{1}, P_{0}\right)-\int_{Q_{0}}^{z} \omega_{3}\left(P_{2}, P_{0}\right)-\frac{2 \pi i N}{\Omega_{A}} \int_{Q_{0}}^{z} \omega_{1}\right) .
$$

Notations:

- Q_{0} : a fixed point $\neq P_{0}, P_{1}, P_{2}$.
- $\omega_{3}(P, Q)$: an normalised Abelian differential of the third kind with simple poles at P and Q normalised by
$-\operatorname{Res}_{P} \omega_{3}(P, Q)=1, \operatorname{Res}_{Q} \omega_{3}(P, Q)=-1$.
$-\int_{A} \omega_{3}(P, Q)=0$.
Existence of such ω_{3} shall be proved later.
- N : an integer determined later.

Need to show:

- $f(z)$ has a simple pole at P_{2} (and a simple zero at P_{1}).
- $f(z)$ is a single-valued meromorphic function on $\overline{\mathcal{R}}$.
$\underline{f(z)}$ has a simple pole at P_{2}. (The proof of $f\left(P_{1}\right)=0$ is similar.)
$\omega_{3}\left(P_{2}, P_{0}\right)=\left(\frac{1}{z-P_{2}}+(\right.$ holomorphic function $\left.)\right) d z$ at P_{2}.

$$
\Longrightarrow \int_{Q_{0}}^{z} \omega_{3}\left(P_{2}, P_{0}\right)=\log \left(z-P_{2}\right)+(\text { holomorphic function }) .
$$

When $z \rightarrow P_{2}$, only this term in the definition of $f(z)$ diverges.

$$
\begin{aligned}
\Longrightarrow \quad f(z) & \sim \exp \left(-\log \left(z-P_{2}\right)+(\text { holomorphic function })\right) \\
& =\frac{1}{z-P_{2}} \times(\text { non-zero holomorphic function })
\end{aligned}
$$

Single-valuedness of $f(z)$.
Possible multi-valuedness \leftarrow ambiguity of integration contours.
Three types of contours should be checked.
(i) contours around singularities of $\omega_{3}\left(P_{1}, P_{0}\right)$ and $\omega_{3}\left(P_{2}, P_{0}\right)$.
(ii) contours around the A-cycle.
(iii) contours around the B-cycle.

- Case (i).

When z goes around P_{1} : (The proofs for P_{2} and P_{0} are the same.)

$$
\int_{Q_{0}}^{z \circlearrowleft_{P_{1}}} \omega_{3}\left(P_{1}, P_{0}\right)=\int_{Q_{0}}^{z} \omega_{3}\left(P_{1}, P_{0}\right)+2 \pi i .
$$

($z \circlearrowleft_{P_{1}}$ means that the contour additionally goes around P_{1}.)
$\Longrightarrow f(z) \mapsto f(z) \times e^{2 \pi i}=f(z)$. OK!

- Case (ii).

Recall $\int_{A} \omega_{3}(P, Q)=0 \Longrightarrow \int_{Q_{0}}^{z \circlearrowleft_{A}} \omega_{3}\left(P_{i}, P_{0}\right)=\int_{Q_{0}}^{z} \omega_{3}\left(P_{i}, P_{0}\right)$.
($z \circlearrowleft_{A}$: the contour additionally goes around the A-cycle.)
On the other hand, $\int_{Q_{0}}^{z \circlearrowleft_{A}} \omega_{1}=\int_{Q_{0}}^{z} \omega_{1}+\Omega_{A}$.
$\Longrightarrow f(z) \mapsto f(z) \times \exp \left(-\frac{2 \pi i N}{\Omega_{A}} \Omega_{A}\right)=f(z)$. OK!

- Case (iii).

Lemma: \exists contour $C: Q \rightarrow P$ such that

$$
\int_{B} \omega_{3}(P, Q)=\frac{2 \pi i}{\Omega_{A}} \int_{C} \omega_{1}
$$

We prove this lemma later.

$$
\begin{aligned}
& \left(\int_{Q_{0}}^{z O_{B}} \omega_{3}\left(P_{1}, P_{0}\right)-\int_{Q_{0}}^{z \circlearrowleft_{B}} \omega_{3}\left(P_{2}, P_{0}\right)\right) \\
- & \left(\int_{Q_{0}}^{z} \omega_{3}\left(P_{1}, P_{0}\right)-\int_{Q_{0}}^{z} \omega_{3}\left(P_{2}, P_{0}\right)\right) \\
= & \int_{B} \omega_{3}\left(P_{1}, P_{0}\right)-\int_{B} \omega_{3}\left(P_{2}, P_{0}\right) \stackrel{\text { Lemma }}{=} \frac{2 \pi i}{\Omega_{A}}\left(\int_{P_{0}}^{P_{1}} \omega_{1}-\int_{P_{0}}^{P_{2}} \omega_{1}\right) .
\end{aligned}
$$

Assumption $A J\left(P_{1}\right)=A J\left(P_{2}\right)$ means

$$
\int_{P_{0}}^{P_{1}} \omega_{1}-\int_{P_{0}}^{P_{2}} \omega_{1}=M \Omega_{A}+N \Omega_{B}
$$

for some $M, N \in \mathbb{Z}$. This is the " N " in the definition of $f(z)$.

$$
\begin{aligned}
\Longrightarrow f(z) \mapsto & f(z) \exp \left(\frac{2 \pi i}{\Omega_{A}}\left(M \Omega_{A}+N \Omega_{B}\right)-\frac{2 \pi i N}{\Omega_{A}} \int_{B} \omega_{1}\right) \\
& =f(z) \exp \left(2 \pi i M+\frac{2 \pi i N \Omega_{B}}{\Omega_{A}}-\frac{2 \pi i N}{\Omega_{A}} \Omega_{B}\right) \\
& =f(z) .
\end{aligned}
$$

Single-valuedness proved!! = End of the proof of the Abel-Jacobi theorem.

It remains to show:

- Lemma.
- Existence of $\omega_{3}(P, Q)$.
- Proof of the lemma.
$F(z):=\int_{P_{0}}^{z} \omega_{1}$: multivalued holomorphic function on $\overline{\mathcal{R}}$
(incomplete elliptic integral of the first kind).
Cut $\overline{\mathcal{R}}$ along A - and B-cycles to a rectangle S : (Figure)

By the residue theorem,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\partial S} F(z) \omega_{3}(P, Q) & =\operatorname{Res}_{P} F(z) \omega_{3}(P, Q)+\operatorname{Res}_{Q} F(z) \omega_{3}(P, Q) \\
& =F(P)-F(Q)=\int_{P_{0}}^{P} \omega_{1}-\int_{P_{0}}^{Q} \omega_{1}=\int_{Q}^{P} \omega_{1} .
\end{aligned}
$$

(All the contours are in S.)

On the other hand,

$$
\int_{\partial S} F(z) \omega_{3}(P, Q)=\left(\int_{A_{-}}-\int_{A_{+}}+\int_{B_{+}}-\int_{B_{-}}\right) F(z) \omega_{3}(P, Q) .
$$

From the multi-valuedness of $F(z)$,

$$
\begin{aligned}
& \int_{A_{-}} F(z) \omega_{3}(P, Q)-\int_{A_{+}} F(z) \omega_{3}(P, Q) \\
= & \int_{A}\left(F(z)-F\left(z \circlearrowleft_{B}\right)\right) \omega_{3}(P, Q) \\
= & \int_{A}\left(-\int_{B} \omega_{1}\right) \omega_{3}(P, Q)=-\left(\int_{B} \omega_{1}\right)\left(\int_{A} \omega_{3}(P, Q)\right) \\
= & 0 . \quad\left(\text { Recall the normalisation }: \int_{A} \omega_{3}(P, Q)=0 .\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \int_{B_{+}} F(z) \omega_{3}(P, Q)-\int_{B_{-}} F(z) \omega_{3}(P, Q) \\
= & \left(\int_{A} \omega_{1}\right)\left(\int_{B} \omega_{3}(P, Q)\right)=\Omega_{A} \int_{B} \omega_{3}(P, Q) .
\end{aligned}
$$

As a result,

$$
2 \pi i \int_{Q}^{P} \omega_{1}=\Omega_{A} \int_{B} \omega_{3}(P, Q) .
$$

- Proof of the existence of $\omega_{3}(P, Q)$.

We have only to show existence of $\tilde{\omega}_{3}(P, Q)$ with simple poles at P and Q,

$$
\operatorname{Res}_{P} \tilde{\omega}_{3}(P, Q)=1, \quad \operatorname{Res}_{Q} \tilde{\omega}_{3}(P, Q)=-1
$$

Because:

- $\tilde{\omega}_{3}(P, Q)+\lambda \omega_{1}$ has the same property for any $\lambda \in \mathbb{C}$.
- $\int_{A} \omega_{1}=\Omega_{A} \neq 0$.
\Longrightarrow If $\lambda=-\frac{1}{\Omega_{A}} \int_{A} \tilde{\omega}_{3}(P, Q)$,

$$
\omega_{3}(P, Q):=\tilde{\omega}_{3}(P, Q)+\lambda \omega_{1}
$$

satisfies all the conditions, including $\int_{A} \omega_{3}(P, Q)=0$.

- Construction of $\tilde{\omega}_{3}(P, Q)$.

Recall: $\overline{\mathcal{R}}=$ compactification of $\mathcal{R}=\left\{(z, w) \mid w^{2}=\varphi(z)\right\}$,

$$
\varphi(z)=a\left(z-\alpha_{0}\right)\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)\left(z-\alpha_{3}\right) .
$$

Case I. $P, Q \neq \infty_{ \pm}$.
Denote $P=\left(z_{1}, w_{1}=\sqrt{\varphi\left(z_{1}\right)}\right), Q=\left(z_{2}, w_{2}=\sqrt{\varphi\left(z_{2}\right)}\right)$.
(Branches of $\sqrt{ }$ are defined appropriately.)

$$
\tilde{\omega}_{3}(P, Q):=\frac{1}{2}\left(\frac{w+w_{1}}{z-z_{1}}-\frac{w+w_{2}}{z-z_{2}}\right) \frac{d z}{w} .
$$

Exercise: Check that this $\tilde{\omega}_{3}(P, Q)$ satisfies the required properties: holomorphic on $\overline{\mathcal{R}} \backslash\{P, Q\}$, simple poles at $P, Q, \operatorname{Res}_{P}=1, \operatorname{Res}_{Q}=-1$.
(Use an appropriate coordinate, especially at $\infty_{ \pm}$and $(z, w)=\left(\alpha_{i}, 0\right)!$)

Case II. $P=\infty_{+}, Q \neq \infty_{ \pm}$.
Case III. $P=\infty_{+}, Q=\infty_{-}$.
Exercise: Find $\tilde{\omega}_{3}(P, Q)$ for the cases II and III.
(Hint: When $z_{1} \rightarrow \infty, w_{1} \sim \pm \sqrt{a} z_{1}^{2} . \Longrightarrow \tilde{\omega}_{3}(P, Q)$ of Case I diverges.
Find an appropriate $\lambda=\lambda\left(z_{1}\right)$ and take $\lim _{z_{1} \rightarrow \infty}\left(\tilde{\omega}_{3}(P, Q)-\lambda \omega_{1}\right)$.)

Exercise*: Find $\tilde{\omega}_{3}(P, Q)$ when $\operatorname{deg} \varphi=3$.

Remark:
There is such $\omega_{3}(P, Q)$ on any compact Riemann surface.
The proof requires much analysis!

