Elliptic Functions

Abel-Jacobi theorem

§7.1 Abel-Jacobi theorem

Recall: periods of $\omega_1 = \frac{dz}{\sqrt{\varphi(z)}} = \frac{dz}{w}$ belong to $\Gamma := \mathbb{Z}\Omega_A + \mathbb{Z}\Omega_B$:

$$\Omega_A := \int_A \omega_1, \qquad \Omega_B := \int_B \omega_1.$$

 \Longrightarrow The *Abel-Jacobi map*:

 $AJ: \bar{\mathcal{R}} \ni P \mapsto \int_{P_0}^P \omega_1 \mod \Gamma \in \mathbb{C}/\Gamma$

ΩΔ

is well-defined. $(P_0$: a fixed point in $\bar{\mathcal{R}}$.)

Remark: There is an "Abel-Jacobi map" associated to any compact Riemann surface. The above AJ is a special case.

Theorem (Abel-Jacobi theorem)

- (i) The Abel-Jacobi map AJ is bijective.
- (ii) It is an isomorphism of complex manifolds between $\bar{\mathcal{R}}$ and \mathbb{C}/Γ .

Proof of (ii) \leftarrow (i):

- AJ is holomorphic (\Leftarrow definition).
- Complex analysis:

The inverse map of a holomorphic bijection is holomorphic.

The essential part of the theorem is bijectivity (i).

$\S7.2$ Surjectivity of AJ (Jacobi's theorem)

Recall:

- The image of a compact set by a continuous map is compact.
- A compact subset of a Hausdorff space is closed.

$$\begin{array}{l} AJ \colon \operatorname{holomorphic} \Rightarrow \operatorname{continuous.} \\ \bar{\mathcal{R}} \colon \operatorname{compact.} \end{array} \Rightarrow AJ(\bar{\mathcal{R}}) \colon \operatorname{compact.} \Rightarrow \operatorname{closed} \operatorname{in} \, \mathbb{C}/\Gamma. \end{array}$$

On the other hand,

• A holomorphic map is open, i.e., the image of an open set is open.

$$\Longrightarrow AJ(\bar{\mathcal{R}})$$
 is open in \mathbb{C}/Γ .

 $AJ(\bar{\mathcal{R}})$ is closed & open in \mathbb{C}/Γ .

 $\Longrightarrow AJ(\bar{\mathcal{R}})$ is a connected component of \mathbb{C}/Γ .

But \mathbb{C}/Γ is connected!

Hence,

$$AJ(\bar{\mathcal{R}}) = \mathbb{C}/\Gamma.$$

Corollary:

 Ω_A and Ω_B are linearly independent over \mathbb{R} . In particular, $\Omega_A, \Omega_B \neq 0$.

<u>Proof</u>: $\bar{\mathcal{R}}$: compact $\Longrightarrow \mathbb{C}/\Gamma = AJ(\bar{\mathcal{R}})$: compact.

 \leftrightarrow If Ω_A & Ω_B : linearly dependent/ \mathbb{R} , $\Gamma = \mathbb{Z}\Omega_A + \mathbb{Z}\Omega_B \subset \mathbb{R}\Omega_A$ or $\mathbb{R}\Omega_B$.

$$\Longrightarrow \mathbb{C}/\Gamma$$
 is not compact.

§7.3 Injectivity of AJ (Abel's theorem)

Assumption: $AJ(P_1) = AJ(P_2)$, but $P_1 \neq P_2$.

<u>Goal</u>: Construct a meromorphic function f(z) on $\bar{\mathcal{R}}$ such that

- f has a unique pole at P_2 , which is simple.
- $f(z) = 0 \Leftrightarrow z = P_1$. (This property will not be used.)

But such f cannot exist!

Because, as ω_1 is a holomorphic nowhere vanishing differential,

- $f(z) \omega_1$ has a simple pole at P_2 . $\Longrightarrow \int_C f(z) \omega_1 \neq 0$.
- $f(z) \omega_1$ is holomoprhic elsewhere. $\Longrightarrow \int_C f(z) \omega_1 = 0$.

(C: a small circle around P_2 ; Figure)

Contradiction $\Longrightarrow P_1 = P_2$.

Construction of f(z):

We define f(z) by

$$f(z) := \exp\left(\int_{Q_0}^z \omega_3(P_1, P_0) - \int_{Q_0}^z \omega_3(P_2, P_0) - \frac{2\pi i N}{\Omega_A} \int_{Q_0}^z \omega_1\right).$$

Notations:

- Q_0 : a fixed point $\neq P_0, P_1, P_2$.
- $\omega_3(P,Q)$: an normalised Abelian differential of the third kind with simple poles at P and Q normalised by
 - Res_P $\omega_3(P, Q) = 1$, Res_Q $\omega_3(P, Q) = -1$.

$$-\int_A \omega_3(P,Q) = 0.$$

Existence of such ω_3 shall be proved later.

ullet N: an integer determined later.

Need to show:

- f(z) has a simple pole at P_2 (and a simple zero at P_1).
- f(z) is a single-valued meromorphic function on $\bar{\mathcal{R}}$.

f(z) has a simple pole at P_2 . (The proof of $f(P_1) = 0$ is similar.)

$$\omega_3(P_2,P_0) = \left(\frac{1}{z-P_2} + (\text{holomorphic function})\right) dz \text{ at } P_2.$$

$$\Longrightarrow \int_{Q_0}^z \omega_3(P_2, P_0) = \log(z - P_2) + \text{(holomorphic function)}.$$

When $z \to P_2$, only this term in the definition of f(z) diverges.

$$\implies f(z) \sim \exp\left(-\log(z - P_2) + (\text{holomorphic function})\right)$$

$$=\frac{1}{z-P_2}\times (\text{non-zero holomorphic function}).$$

Single-valuedness of f(z).

Possible multi-valuedness ← ambiguity of integration contours.

Three types of contours should be checked.

- (i) contours around singularities of $\omega_3(P_1, P_0)$ and $\omega_3(P_2, P_0)$.
- (ii) contours around the A-cycle.
- (iii) contours around the B-cycle.
- Case (i).

When z goes around P_1 : (The proofs for P_2 and P_0 are the same.)

$$\int_{Q_0}^{z \circlearrowleft_{P_1}} \omega_3(P_1, P_0) = \int_{Q_0}^z \omega_3(P_1, P_0) + 2\pi i.$$

 $(z \circlearrowleft_{P_1}$ means that the contour additionally goes around P_1 .)

$$\implies f(z) \mapsto f(z) \times e^{2\pi i} = f(z)$$
. OK!

• Case (ii).

$$\operatorname{Recall} \int_A \omega_3(P,Q) = 0 \Longrightarrow \int_{Q_0}^{z \circlearrowleft_A} \omega_3(P_i,P_0) = \int_{Q_0}^z \omega_3(P_i,P_0).$$

 $(z \circlearrowleft_A$: the contour additionally goes around the A-cycle.)

On the other hand,
$$\int_{Q_0}^{z\circlearrowleft_A}\omega_1=\int_{Q_0}^z\omega_1+\Omega_A$$
 .

$$\Longrightarrow f(z) \mapsto f(z) \times \exp\left(-\frac{2\pi i N}{\Omega_A}\Omega_A\right) = f(z).$$
 OK!

• Case (iii).

<u>Lemma</u>: \exists contour $C:Q \rightarrow P$ such that

$$\int_{B} \omega_3(P,Q) = \frac{2\pi i}{\Omega_A} \int_{C} \omega_1.$$

We prove this lemma later.

$$\left(\int_{Q_0}^{z \circlearrowleft_B} \omega_3(P_1, P_0) - \int_{Q_0}^{z \circlearrowleft_B} \omega_3(P_2, P_0)\right) \\
- \left(\int_{Q_0}^z \omega_3(P_1, P_0) - \int_{Q_0}^z \omega_3(P_2, P_0)\right) \\
= \int_B \omega_3(P_1, P_0) - \int_B \omega_3(P_2, P_0) \stackrel{\text{Lemma}}{=} \frac{2\pi i}{\Omega_A} \left(\int_{P_0}^{P_1} \omega_1 - \int_{P_0}^{P_2} \omega_1\right).$$

Assumption $AJ(P_1) = AJ(P_2)$ means

$$\int_{P_0}^{P_1} \omega_1 - \int_{P_0}^{P_2} \omega_1 = M\Omega_A + N\Omega_B$$

for some $M, N \in \mathbb{Z}$. This is the "N" in the definition of f(z).

$$\implies f(z) \mapsto f(z) \exp\left(\frac{2\pi i}{\Omega_A} (M\Omega_A + N\Omega_B) - \frac{2\pi i N}{\Omega_A} \int_B \omega_1\right)$$

$$= f(z) \exp\left(2\pi i M + \frac{2\pi i N\Omega_B}{\Omega_A} - \frac{2\pi i N}{\Omega_A} \Omega_B\right)$$

$$= f(z).$$

Single-valuedness proved!! = End of the proof of the Abel-Jacobi theorem.

It remains to show:

- Lemma.
- Existence of $\omega_3(P,Q)$.

• Proof of the lemma.

 $F(z):=\int_{P_0}^z \omega_1$: multivalued holomorphic function on $ar{\mathcal{R}}$

(incomplete elliptic integral of the first kind).

Cut $\bar{\mathcal{R}}$ along A- and B-cycles to a rectangle S: (Figure)

By the residue theorem,

$$\frac{1}{2\pi i} \int_{\partial S} F(z) \,\omega_3(P, Q) = \text{Res}_P F(z) \,\omega_3(P, Q) + \text{Res}_Q F(z) \,\omega_3(P, Q)$$
$$= F(P) - F(Q) = \int_{P_0}^P \omega_1 - \int_{P_0}^Q \omega_1 = \int_Q^P \omega_1.$$

(All the contours are in S.)

On the other hand,

$$\int_{\partial S} F(z) \,\omega_3(P,Q) = \left(\int_{A_-} - \int_{A_+} + \int_{B_+} - \int_{B_-} \right) F(z) \,\omega_3(P,Q).$$

From the multi-valuedness of F(z),

$$\begin{split} &\int_{A_{-}} F(z)\,\omega_{3}(P,Q) - \int_{A_{+}} F(z)\,\omega_{3}(P,Q) \\ &= \int_{A} (F(z) - F(z\circlearrowleft_{B}))\,\omega_{3}(P,Q) \\ &= \int_{A} \left(-\int_{B} \omega_{1} \right)\,\omega_{3}(P,Q) = -\left(\int_{B} \omega_{1} \right) \left(\int_{A} \omega_{3}(P,Q) \right) \\ &= 0. \qquad \left(\text{Recall the normalisation} : \int_{A} \omega_{3}(P,Q) = 0. \right) \end{split}$$

Similarly,

$$\int_{B_{+}} F(z) \,\omega_{3}(P,Q) - \int_{B_{-}} F(z) \,\omega_{3}(P,Q)$$

$$= \left(\int_{A} \omega_{1}\right) \left(\int_{B} \omega_{3}(P,Q)\right) = \Omega_{A} \int_{B} \omega_{3}(P,Q).$$

As a result,

$$2\pi i \int_{Q}^{P} \omega_1 = \Omega_A \int_{B} \omega_3(P, Q).$$

• Proof of the existence of $\omega_3(P,Q)$.

We have only to show existence of $\tilde{\omega}_3(P,Q)$ with simple poles at P and Q,

$$\operatorname{Res}_{P} \tilde{\omega}_{3}(P,Q) = 1, \qquad \operatorname{Res}_{Q} \tilde{\omega}_{3}(P,Q) = -1.$$

Because:

• $\tilde{\omega}_3(P,Q) + \lambda \omega_1$ has the same property for any $\lambda \in \mathbb{C}$.

$$\bullet \int_A \omega_1 = \Omega_A \neq 0.$$

$$\Longrightarrow$$
 If $\lambda = -\frac{1}{\Omega_A} \int_A \tilde{\omega}_3(P,Q),$

$$\omega_3(P,Q) := \tilde{\omega}_3(P,Q) + \lambda \omega_1$$

satisfies all the conditions, including $\int_A \omega_3(P,Q) = 0$.

• Construction of $\tilde{\omega}_3(P,Q)$.

Recall: $\bar{\mathcal{R}}=$ compactification of $\mathcal{R}=\{(z,w)\mid w^2=\varphi(z)\}$,

$$\varphi(z) = a(z - \alpha_0)(z - \alpha_1)(z - \alpha_2)(z - \alpha_3).$$

Case I. $P, Q \neq \infty_{\pm}$.

Denote
$$P = (z_1, w_1 = \sqrt{\varphi(z_1)})$$
, $Q = (z_2, w_2 = \sqrt{\varphi(z_2)})$.

(Branches of $\sqrt{\ }$ are defined appropriately.)

$$\tilde{\omega}_3(P,Q) := \frac{1}{2} \left(\frac{w + w_1}{z - z_1} - \frac{w + w_2}{z - z_2} \right) \frac{dz}{w}.$$

Exercise: Check that this $\tilde{\omega}_3(P,Q)$ satisfies the required properties: holomorphic on $\bar{\mathcal{R}} \setminus \{P,Q\}$, simple poles at P, Q, $\mathrm{Res}_P = 1$, $\mathrm{Res}_Q = -1$.

(Use an appropriate coordinate, especially at ∞_{\pm} and $(z,w)=(\alpha_i,0)!$)

Case II. $P = \infty_+$, $Q \neq \infty_\pm$.

Case III. $P = \infty_+$, $Q = \infty_-$.

Exercise: Find $\tilde{\omega}_3(P,Q)$ for the cases II and III.

(Hint: When $z_1 \to \infty$, $w_1 \sim \pm \sqrt{a} z_1^2$. $\Longrightarrow \tilde{\omega}_3(P,Q)$ of Case I diverges.

Find an appropriate $\lambda = \lambda(z_1)$ and take $\lim_{z_1 \to \infty} (\tilde{\omega}_3(P,Q) - \lambda \omega_1)$.)

Exercise*: Find $\tilde{\omega}_3(P,Q)$ when $\deg \varphi = 3$.

Remark:

There is such $\omega_3(P,Q)$ on any compact Riemann surface.

The proof requires much analysis!