Elliptic Integrals and Elliptic Functions

Takashi Takebe

11 November 2021

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:

$$
(\text { your final mark })=\min \left\{15 \times \frac{\text { total points you get }}{\text { max. possible points }}, 10\right\}
$$

- About fifteen problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of $\mathbf{1 2 - 1 3}$: 16 November 2021.

12. (1 pt.) Check that the Abelian differential ω_{1} defined in the seminar (11 November 2021) is holomorphic and nowhere vanishing on the ellipitc curve $\overline{\mathcal{R}}_{\varphi}$ for a polynomial $\varphi(z)$ of degree 3 .
13. Let the A-cycle and the B-cycle on the elliptic curve $\overline{\mathcal{R}}_{\varphi}\left(\varphi(z)=\left(1-z^{2}\right)(1-\right.$ $\left.k^{2} z^{2}\right)$) be those defined in the seminar on 11 November 2021 and $\omega_{1}:=\frac{d z}{w}$, $\omega_{2}:=\sqrt{\frac{1-k^{2} z^{2}}{1-z^{2}}} d z$. We assume $0<k<1$.
(i) (1 pt.) Prove that the A-period of the Abelian differential ω_{2} is equal to $4 E(k)$, where $E(k)$ is the complete elliptic integral of the second kind.
(ii) (1 pt.) Show $d\left(\frac{z w}{1-k^{2} z^{2}}\right)=\frac{k^{2} z^{4}-2 z^{2}+1}{1-k^{2} z^{2}} \omega_{1}$. (Hint: Use $w^{2}=\varphi(z)$ to compute $d w$.)
(iii) (2 pt.) Prove that $K(k)$ (the complete elliptic integral of the first kind) and $E(k)$ satisfy the following system of differential equations:

$$
\frac{d E}{d k}=\frac{E}{k}-\frac{K}{k}, \quad \frac{d K}{d k}=\frac{E}{k k^{\prime 2}}-\frac{K}{k} .
$$

(Hint: To obtain the first, differentiate ω_{2} with respect to k and integrate it over $[0,1]$. To obtain the second, compare $\frac{\partial}{\partial k} \omega_{1}-\frac{1}{k k^{\prime 2}} \omega_{2}+\frac{1}{k} \omega_{1}$ with (ii) and consider the A-period. Note that the integral of an exact form over a cycle is zero.)

