
Elliptic Functions

Elliptic functions (general theory)
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§8.1 Definition of Elliptic Functions

At last we have come to the definition of elliptic functions!

Definition.

A meromorphic function on an elliptic curve is called an elliptic function.

A direct consequence:

f , g: elliptic functions =⇒ f ± g, fg, f/g: elliptic functions.

Namely, {elliptic functions} is a field.
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By the Abel-Jacobi theorem

Elliptic curve ∼= C/Γ, Γ = ZΩA + ZΩB.

ΩA, ΩB: linearly independent over R.

=⇒ An alternative (standard) definition:

A meromorophic function on C satisfying

f(u+ ΩA) = f(u), f(u+ ΩB) = f(u)

is called an elliptic function with periods ΩA and ΩB.

Remark: For any ΩA, ΩB, ∃ an elliptic curve, i.e.,

∃φ(z): polynomial of degree 3 or 4 such that

C/ZΩA + ZΩB
∼= {w2 = φ(z)}.

Proved later. (⇐= differential equation of ℘(z))
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Example:

φ(z): as before.

R̄ = {(z, w) | w2 = φ(z)} pr−−−→ P1

(z, w) �→ z, (projection)

∞ or ∞± �→ ∞.

pr: a holomorphic map (a meromorphic function with a pole at ∞).

=⇒ Composition

C π−−−−→ C/Γ AJ−1

−−−−→ R̄ pr−−−−→ P1

gives an elliptic function on C: f(u) = pr ◦AJ−1 ◦ π(u).
Since AJ is defined by an elliptic integral, this means that

the inverse function of an elliptic integral is an elliptic function!
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• φ(z) = 4z3 − g2z − g3. (g2, g3 ∈ C)

Fix the base point of the Abel-Jacobi map to ∞:

AJ(z) =

� z

∞

dz

w
=

� z

∞

dz�
4z3 − g2z − g3

.

℘(u) := pr ◦AJ−1 ◦ π(u): Weirstrass’s ℘ function.

AJ(∞) = 0 =⇒ ℘(0) = ∞, i.e., u = 0 is a pole.

• φ(z) = (1− z2)(1− k2z2). (k ∈ C, k �= 0,±1)

Fix the base point of the Abel-Jacobi map to 0:

AJ(z) =

� z

0

dz

w
=

� z

0

dz�
(1− z2)(1− k2z2)

.

sn(u) := pr ◦AJ−1 ◦ π(u): Jacobi’s sn function.

A natural generalisation of the previously defined sn over R.
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• ℘(u), sn(u): periodic with periods ΩA, ΩB. ⇐= π : C → C/Γ.

• For φ(z) = (1− z2)(1− k2z2), we have computed

ΩA = 4K(k), ΩB = 2iK ′(k).

=⇒ Periods of sn(u): 4K(k), 2iK ′(k).

Consistent with the previous definition for sn(x), x ∈ R.

• We construct ℘(u) and sn(u) by different methods later.
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§8.2 General Properties of Elliptic Functions

f(u): an elliptic function on C with periods ΩA and ΩB.

We call a parallelogram spanned by ΩA & ΩB a period parallelogram.

(Figure of a period parallelogram.)

Theorem (Liouville)

If an elliptic funtion f(u) is entire, then f(u) is constant.

Proof: f : doubly periodic. =⇒ f(C) = f(period parallelogram).

f : continuous & a period parallelogram is bounded. =⇒ f(C): bounded.

Liouville’s theorem (Complex analysis!) =⇒ f : constant.
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Theorem (Liouville)

The sum of residues of f(u) at poles in one period parallelogram is zero.

Proof:

Π: a period parallelogram (poles of f �∈ ∂Π; cf. Figure).

�

∂Π
f(u) du = 2πi(the sum of residues in Π).

On the other hand,

�

∂Π
f(u) du =

�� a+ΩA

a
+

� a+ΩA+ΩB

a+ΩA

+

� a+ΩB

a+ΩA+ΩB

+

� a

a+ΩB

�
f(u) du.
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By the periodicity,
� a+ΩA+ΩB

a+ΩA

f(u) du =

� a+ΩB

a
f(u) du = −

� a

a+ΩB

f(u) du,

� a+ΩB

a+ΩA+ΩB

f(u) du =

� a

a+ΩA

f(u) du = −
� a+ΩA

a
f(u) du.

Summing up, 2πi(the sum of residues in Π) =

�

∂Π
f(u) du = 0.

Corollary:

� ∃ an elliptic function with only one simple pole in a period parallelogram.

Proof:

Otherwise, the sum of residue = the residue at the simple pole �= 0.

Remark: We have already proved the same fact in the proof of

the Abel-Jacobi theorem (� ∃F (z)ω1).
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Definition:

order of f = ord f := ♯ poles with multiplicity in a period parallelogram.

Corollary means “There is no elliptic funtion of order 1.”

For the next theorem, we need an obvious lemma:

Lemma: f(u): an elliptic function =⇒ f ′(u): an elliptic function.

( f(u+ΩA) = f(u+ΩB) = f(u) =⇒ f ′(u+ΩA) = f ′(u+ΩB) = f ′(u) )

Theorem:

For any a ∈ C and Π: a period parallelogram (f �= ∞, a on ∂Π).

♯ of {u ∈ Π | f(u) = a} with multiplicities = ord f.
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Proof:

f(u)− a: an elliptic function of order ord f . =⇒ May assume a = 0.

♯{zeroes of f(u) in Π}− ♯{poles of f(u) in Π}

=
1

2πi

�

∂Π

f ′(u)
f(u)

du (argument principle)

= 0.

�
lemma ⇒ f ′/f : elliptic function;�

∂Π (elliptcit function) du = 0.

�

Theorem: N := ord f , a ∈ C.

α1, . . . ,αN : points in Π, f(αi) = a (with multiplicities).

β1, . . . ,βN : poles of f(u) in Π (with multiplicities).

=⇒ α1 + · · ·+ αN ≡ β1 + · · ·+ βN mod ZΩA + ZΩB.
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Proof:

Again, we may assume a = 0.

Recall the generalised argument principle in complex analysis:

D: a domain, f : meromorphic, φ: holomorphic in a nbd of D̄

=⇒ 1

2πi

�

∂D
φ(u)

f ′(u)
f(u)

du =
�

α∈D:f(α)=0

φ(α)−
�

β∈D: pole of f

φ(β).

Apply it to D = Π, φ(u) = u:

1

2πi

�

∂Π
u
f ′(u)
f(u)

du =
N�

j=1

αj −
N�

j=1

βj .

NOTE: The integrand is NOT an elliptic function because of u!
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Let us compute
�

∂Π
u
f ′(u)
f(u)

du =

�� a+ΩA

a
+

� a+ΩA+ΩB

a+ΩA

+

� a+ΩB

a+ΩA+ΩB

+

� a

a+ΩB

�
u
f ′(u)
f(u)

du.

The second term is
� a+ΩA+ΩB

a+ΩA

u
f ′(u)
f(u)

du =

� a+ΩB

a
(u+ ΩA)

f ′(u+ ΩA)

f(u+ ΩA)
du

= −
� a

a+ΩB

u
f ′(u)
f(u)

du− ΩA

� a

a+ΩB

f ′(u)
f(u)

du.

Recall the proof of the “argument principle” on the winding number:
� a

a+ΩB

f ′(u)
f(u)

du =

� a

a+ΩB

d log f(u) = log f(a)− log f(a+ ΩB).

Note that f(a) = f(a+ ΩB), BUT log f(a) �= log f(a+ ΩB),

because of multivaluedness of log.
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log f(a) = log |f(a)|+ i arg f(a),

log f(a+ ΩB) = log |f(a+ ΩB)|+ i arg f(a+ ΩB)

= log |f(a)|+ i arg f(a+ ΩB).

The argument is determined only up to 2πZ.

log f(a+ ΩB)− log f(a) = i(arg f(a+ ΩB)− arg f(a))

= 2πin. (∃n ∈ Z)

=⇒
� a

a+ΩB

f ′(u)
f(u)

du = −2πin.

=⇒
� a+ΩA+ΩB

a+ΩA

u
f ′(u)
f(u)

du = −
� a

a+ΩB

u
f ′(u)
f(u)

du+ 2πinΩA.
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Similarly,

� a+ΩB

a+ΩA+ΩB

u
f ′(u)
f(u)

du =

� a

a+ΩA

(u+ ΩB)
f ′(u+ ΩB)

f(u+ ΩB)
du

= −
� a+ΩA

a
u
f ′(u)
f(u)

du− ΩB

� a+ΩA

a

f ′(u)
f(u)

du.

= −
� a+ΩA

a
u
f ′(u)
f(u)

du+ 2πimΩB. (∃m ∈ Z)

Summing up,

N�

j=1

αj −
N�

j=1

βj =
1

2πi

�

∂Π
u
f ′(u)
f(u)

du = nΩA +mΩB.
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