Elliptic Functions

Elliptic functions (general theory)



§8.1 Definition of Elliptic Functions

At last we have come to the definition of elliptic functions!

Definition.

A meromorphic function on an elliptic curve is called an elliptic function.

A direct consequence:

f, g: elliptic functions = f £ g, fg, f/g: elliptic functions.

Namely, {elliptic functions} is a field.



By the Abel-Jacobi theorem

Elliptic curve = C/T, ' =704 + 7ZOp.

4, 251 linearly independent over R.

— An alternative (standard) definition:

A meromorophic function on C satisfying

flut+Qa) = f(u),  flut+Qp)=f(u)

Is called an elliptic function with periods {24 and {1p.

Remark: For any 24, €25, 3 an elliptic curve, i.e.,

dp(2): polynomial of degree 3 or 4 such that

C/ZQ4 + 705 = {w? = ¢(2)}.

Proved later. (<= differential equation of p(z))
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Example:

== — l
©(z): as before. 2 ‘f/s_—,p =
R TG T = oG] s B

(z,w) — 2, (projection)

00 Or OO+ —  00.

pr: a holomorphic map (a meromorphic function with a pole at o).
—> Composition

C%C/FL_%QLP“L

gives an elliptic function on C: f(u) = proAJ ! om(u).
Since AJ is defined by an elliptic integral, this means that

the inverse function of an elliptic integral is an elliptic function!
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o p(z) =42° — g2z — g3. (92,93 € C)

Fix the base point of the Abel-Jacobi map to oc:

AJ(z)—/Z@—/Z e
0o W o) \/423—g22—gg.

o(u) == proAJ ! omn(u): Weirstrass's o function.

AJ(x) =0 = p(0) = o0, i.e., u =0 is a pole.

e o(z)=(1—-2%)(1—-k?2%). (keC, k+#0,%£1)

Fix the base point of the Abel-Jacobi map to O:

/dz /\/1—22 (1 —k222)

sn(u) := proAJ ! omx(u): Jacobi's sn function.

A natural generalisation of the previously defined sn over R.
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e p(u), sn(u): periodic with periods Q4, Q5. <= 7n: C — C/T.
o For p(z) = (1 — 2%)(1 — k?2?), we have computed

Qa4 =4K(k), Op = 2iK'(k).
—> Periods of sn(u): 4K (k), 2iK'(k).

Consistent with the previous definition for sn(x), x € R.

e We construct o(u) and sn(u) by different methods later.



§8.2 General Properties of Elliptic Functions

f(w): an elliptic function on C with periods 24 and Q5.
We call a parallelogram spanned by 24 & Q2p a period parallelogram.

(Figure of a period parallelogram.)  a+as a+0xH0Q

a+Qa

Theorem (Liouville)

If an elliptic funtion f(u) is entire, then f(u) is constant.

Proof: f: doubly periodic. = f(C) = f(period parallelogram).
f: continuous & a period parallelogram is bounded. = f(C): bounded.
Liouville's theorem (Complex analysis!) = f: constant.
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Theorem (Liouville)

The sum of residues of f(u) at poles in one period parallelogram is zero.

a+Qa +Qp

Proof: a+Qq

II: a period parallelogram (poles of f & OII; cf. Figure).

a a+Q a

f(u) du = 2mi(the sum of residues in II).
o011

On the other hand,

a+$2 4 a+Q24+0p a+S2p a
f(u du—(/ / / +/ )f(u)du.
o1l a+$24 +Q4+0p a+€2p



By the periodicity,

/ T ) du = / T ) du = - [t

+Q 4

+Qp
a—I—QB a a"‘QA
/ f(u)du:/ f(u)du:—/ f(u) du.
a+24+0p a+$2 4 a
Summing up, 27i(the sum of residues in II) = f(u)du = 0. ]
o011
Corollary:

A an elliptic function with only one simple pole in a period parallelogram.

Proof:

Otherwise, the sum of residue = the residue at the simple pole # 0. []

Remark: We have already proved the same fact in the proof of

the Abel-Jacobi theorem ( AF'(2)w1).
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Definition:

order of f = ord f := # poles with multiplicity in a period parallelogram.

Corollary means “There is no elliptic funtion of order 1."

For the next theorem, we need an obvious lemma:

Lemma: f(u): an elliptic function = f’(u): an elliptic function.

(fu+Q4) = flu+QB) = f(u) = f(u+Q4) = [(u+QB) = f(u))

Theorem:

For any a € C and II: a period parallelogram (f # oo, a on OII).

fof {u €I | f(u) = a} with multiplicities = ord f.
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Proof:

f(u) — a: an elliptic function of order ord f. = May assume a = 0.

f{zeroes of f(u) in II} — g{poles of f(u) in IT}

1 f'(u) .
= — du argument principle
2mi Jor f(w) ( )
_4 lemma = f’/f : elliptic function;
- $or (elliptcit function) du = 0.

Theorem: N :=ord f, a € C.

ai,...,an: pointsin II, f(«a;) = a (with multiplicities).
B1,...,0n: poles of f(u) in IT (with multiplicities).
— a1+ tay=01+---+ 08y mod ZQ 4 + ZS)B.
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Proof:

Again, we may assume a = 0.
Recall the generalised argument principle in complex analysis:

D: a domain, f: meromorphic, ¢: holomorphic in a nbd of D

! flw ,
= o p ewFdd= 3 e- X o)

aeD: f(a)=0 BED: pole of f
Apply it to D =11, p(u) = u:
N N
1 /' (w)
— U du = QU — 3.
2mi Jon  f(u) ; ! ; !

NOTE: The integrand is NOT an elliptic function because of u!
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Let us compute

a—I-QA a—I—QA—I—QB a+2p a /
o1l f a+Q 4 a+QA+Q5 a+Qp f(u)

The second term is

a—|—QA—|—QB / CL—|—QB /
/ uf<u) du:/ (u+QA)f(uj__QA) du

+Q f(u) flu+Qa)
I N O B L ()
B /a+QB f(u) : i /a—i—QB f(u) -

Recall the proof of the “argument principle” on the winding number:

+Qp f(u) a+2p
Note that f(a) = f(a + Qp), BUT log f(a) # log f(a + Qp),
because of multivaluedness of log.
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/a+QB

log f(a) = log|f(a)| + targ f(a), \/
log f(a +Qp) =log|f(a+ Qp)| +iarg f(a + Qp) 0 fa)

= log|f(a)| +iarg f(a+ Qp).

The argument is determined only up to 27Z.

log f(a+Qp) —log f(a) = i(arg f(a + Q2p) — arg f(a))
= 27in. (In € Z)

U .
s / du = —2min.
—|—QB (u)

a+24+0p / a /
:>/ f u) :—/ uf (u) du + 2minfl 4.
+Q4 f(u) a+Qp f(u)
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Similarly,
a+S2p / a /

a+Q4+05 f(u) a+Qa flu+Qp)
o a+ 4 f (u) ) a+$2 4 f’(u)
AR L Q/ Flu)
= s f(u )d 2 Op = 7,
——/a f(u) u + 2mim (Im € Z)
Summing up,
Al = L[ W
j;oz] g =5 - f(u) du = nfdg + mQlpg.
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