Elliptic Functions

Elliptic functions (general theory)

§8.1 Definition of Elliptic Functions

At last we have come to the definition of elliptic functions!

Definition.

A meromorphic function on an elliptic curve is called an elliptic function.

A direct consequence:
f, g : elliptic functions $\Longrightarrow f \pm g, f g, f / g$: elliptic functions.
Namely, \{elliptic functions\} is a field.

By the Abel-Jacobi theorem

$$
\text { Elliptic curve } \cong \mathbb{C} / \Gamma, \quad \Gamma=\mathbb{Z} \Omega_{A}+\mathbb{Z} \Omega_{B}
$$

Ω_{A}, Ω_{B} : linearly independent over \mathbb{R}.
\Longrightarrow An alternative (standard) definition:
A meromorophic function on \mathbb{C} satisfying

$$
f\left(u+\Omega_{A}\right)=f(u), \quad f\left(u+\Omega_{B}\right)=f(u)
$$

is called an elliptic function with periods Ω_{A} and Ω_{B}.
Remark: For any $\Omega_{A}, \Omega_{B}, \exists$ an elliptic curve, i.e.,
$\exists \varphi(z)$: polynomial of degree 3 or 4 such that

$$
\mathbb{C} / \mathbb{Z} \Omega_{A}+\mathbb{Z} \Omega_{B} \cong \overline{\left\{w^{2}=\varphi(z)\right\}} .
$$

Proved later. (\Longleftarrow differential equation of $\wp(z)$)

Example:

$\varphi(z)$: as before.

$$
\begin{array}{cll}
\overline{\mathcal{R}}=\overline{\left\{(z, w) \mid w^{2}=\varphi(z)\right\}} & \xrightarrow{\mathrm{pr}} & \mathbb{P}^{1} \\
(z, w) & \mapsto & z, \text { (projection) } \\
\infty \text { or } \infty_{ \pm} & \mapsto & \infty .
\end{array}
$$

pr: a holomorphic map (a meromorphic function with a pole at ∞).
\Longrightarrow Composition

$$
\mathbb{C} \xrightarrow{\pi} \mathbb{C} / \Gamma \xrightarrow{A J^{-1}} \overline{\mathcal{R}} \xrightarrow{\mathrm{pr}} \mathbb{P}^{1}
$$

gives an elliptic function on $\mathbb{C}: f(u)=\operatorname{pr} \circ A J^{-1} \circ \pi(u)$.
Since $A J$ is defined by an elliptic integral, this means that
the inverse function of an elliptic integral is an elliptic function!

- $\varphi(z)=4 z^{3}-g_{2} z-g_{3} .\left(g_{2}, g_{3} \in \mathbb{C}\right)$

Fix the base point of the Abel-Jacobi map to ∞ :

$$
A J(z)=\int_{\infty}^{z} \frac{d z}{w}=\int_{\infty}^{z} \frac{d z}{\sqrt{4 z^{3}-g_{2} z-g_{3}}}
$$

$\wp(u):=\operatorname{pr} \circ A J^{-1} \circ \pi(u)$: Weirstrass's \wp function.
$A J(\infty)=0 \Longrightarrow \wp(0)=\infty$, i.e., $u=0$ is a pole.

- $\varphi(z)=\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right) .(k \in \mathbb{C}, k \neq 0, \pm 1)$

Fix the base point of the Abel-Jacobi map to 0 :

$$
A J(z)=\int_{0}^{z} \frac{d z}{w}=\int_{0}^{z} \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}
$$

$\operatorname{sn}(u):=\operatorname{pr} \circ A J^{-1} \circ \pi(u):$ Jacobi's sn function.
A natural generalisation of the previously defined sn over \mathbb{R}.

- $\wp(u), \operatorname{sn}(u)$: periodic with periods Ω_{A}, Ω_{B}. $\Longleftarrow \pi: \mathbb{C} \rightarrow \mathbb{C} / \Gamma$.
- For $\varphi(z)=\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)$, we have computed

$$
\Omega_{A}=4 K(k), \quad \Omega_{B}=2 i K^{\prime}(k) .
$$

\Longrightarrow Periods of $\operatorname{sn}(u): 4 K(k), 2 i K^{\prime}(k)$.
Consistent with the previous definition for $\operatorname{sn}(x), x \in \mathbb{R}$.

- We construct $\wp(u)$ and $\operatorname{sn}(u)$ by different methods later.

§8.2 General Properties of Elliptic Functions

$f(u)$: an elliptic function on \mathbb{C} with periods Ω_{A} and Ω_{B}.
We call a parallelogram spanned by $\Omega_{A} \& \Omega_{B}$ a period parallelogram.
(Figure of a period parallelogram.)

Theorem (Liouville)

If an elliptic funtion $f(u)$ is entire, then $f(u)$ is constant.
Proof: f : doubly periodic. $\Longrightarrow f(\mathbb{C})=f($ period parallelogram $)$.
f : continuous \& a period parallelogram is bounded. $\Longrightarrow f(\mathbb{C})$: bounded.
Liouville's theorem (Complex analysis!) $\Longrightarrow f$: constant.

Theorem (Liouville)

The sum of residues of $f(u)$ at poles in one period parallelogram is zero.

Proof:

Π : a period parallelogram (poles of $f \notin \partial \Pi$; cf. Figure).

$$
\int_{\partial \Pi} f(u) d u=2 \pi i(\text { the sum of residues in } \Pi) \text {. }
$$

On the other hand,

$$
\int_{\partial \Pi} f(u) d u=\left(\int_{a}^{a+\Omega_{A}}+\int_{a+\Omega_{A}}^{a+\Omega_{A}+\Omega_{B}}+\int_{a+\Omega_{A}+\Omega_{B}}^{a+\Omega_{B}}+\int_{a+\Omega_{B}}^{a}\right) f(u) d u .
$$

By the periodicity,

$$
\begin{aligned}
& \int_{a+\Omega_{A}}^{a+\Omega_{A}+\Omega_{B}} f(u) d u=\int_{a}^{a+\Omega_{B}} f(u) d u=-\int_{a+\Omega_{B}}^{a} f(u) d u, \\
& \int_{a+\Omega_{A}+\Omega_{B}}^{a+\Omega_{B}} f(u) d u=\int_{a+\Omega_{A}}^{a} f(u) d u=-\int_{a}^{a+\Omega_{A}} f(u) d u .
\end{aligned}
$$

Summing up, $2 \pi i($ the sum of residues in $\Pi)=\int_{\partial \Pi} f(u) d u=0$.

Corollary:

\nexists an elliptic function with only one simple pole in a period parallelogram.

Proof:

Otherwise, the sum of residue $=$ the residue at the simple pole $\neq 0$.
Remark: We have already proved the same fact in the proof of the Abel-Jacobi theorem $\left(\nexists F(z) \omega_{1}\right)$.

Definition:

order of $f=$ ord $f:=\sharp$ poles with multiplicity in a period parallelogram.
Corollary means "There is no elliptic funtion of order 1."

For the next theorem, we need an obvious lemma:
Lemma: $f(u)$: an elliptic function $\Longrightarrow f^{\prime}(u)$: an elliptic function.
$\left(f\left(u+\Omega_{A}\right)=f\left(u+\Omega_{B}\right)=f(u) \Longrightarrow f^{\prime}\left(u+\Omega_{A}\right)=f^{\prime}\left(u+\Omega_{B}\right)=f^{\prime}(u)\right)$

Theorem:

For any $a \in \mathbb{C}$ and Π : a period parallelogram $(f \neq \infty, a$ on $\partial \Pi)$.

$$
\sharp \text { of }\{u \in \Pi \mid f(u)=a\} \text { with multiplicities }=\operatorname{ord} f .
$$

Proof:

$f(u)-a$: an elliptic function of order ord $f . \Longrightarrow$ May assume $a=0$.

$$
\begin{aligned}
& \sharp\{\text { zeroes of } f(u) \text { in } \Pi\}-\sharp\{\text { poles of } f(u) \text { in } \Pi\} \\
= & \frac{1}{2 \pi i} \oint_{\partial \Pi} \frac{f^{\prime}(u)}{f(u)} d u \\
& \text { (argument principle) } \\
= & \\
& \quad \text { lemma } \Rightarrow f^{\prime} / f: \text { elliptic }
\end{aligned}
$$

Theorem: $N:=\operatorname{ord} f, a \in \mathbb{C}$.
$\alpha_{1}, \ldots, \alpha_{N}$: points in $\Pi, f\left(\alpha_{i}\right)=a$ (with multiplicities).
$\beta_{1}, \ldots, \beta_{N}$: poles of $f(u)$ in Π (with multiplicities).

$$
\Longrightarrow \alpha_{1}+\cdots+\alpha_{N} \equiv \beta_{1}+\cdots+\beta_{N} \quad \bmod \mathbb{Z} \Omega_{A}+\mathbb{Z} \Omega_{B} .
$$

Proof:

Again, we may assume $a=0$.
Recall the generalised argument principle in complex analysis:
D : a domain, f : meromorphic, φ : holomorphic in a nbd of \bar{D}

$$
\Longrightarrow \frac{1}{2 \pi i} \oint_{\partial D} \varphi(u) \frac{f^{\prime}(u)}{f(u)} d u=\sum_{\alpha \in D: f(\alpha)=0} \varphi(\alpha)-\sum_{\beta \in D: \text { pole of } f} \varphi(\beta) .
$$

Apply it to $D=\Pi, \varphi(u)=u$:

$$
\frac{1}{2 \pi i} \oint_{\partial \Pi} u \frac{f^{\prime}(u)}{f(u)} d u=\sum_{j=1}^{N} \alpha_{j}-\sum_{j=1}^{N} \beta_{j}
$$

NOTE: The integrand is NOT an elliptic function because of u !

Let us compute
$\oint_{\partial \Pi} u \frac{f^{\prime}(u)}{f(u)} d u=\left(\int_{a}^{a+\Omega_{A}}+\int_{a+\Omega_{A}}^{a+\Omega_{A}+\Omega_{B}}+\int_{a+\Omega_{A}+\Omega_{B}}^{a+\Omega_{B}}+\int_{a+\Omega_{B}}^{a}\right) u \frac{f^{\prime}(u)}{f(u)} d u$.
The second term is

$$
\begin{aligned}
\int_{a+\Omega_{A}}^{a+\Omega_{A}+\Omega_{B}} u \frac{f^{\prime}(u)}{f(u)} d u & =\int_{a}^{a+\Omega_{B}}\left(u+\Omega_{A}\right) \frac{f^{\prime}\left(u+\Omega_{A}\right)}{f\left(u+\Omega_{A}\right)} d u \\
& =-\int_{a+\Omega_{B}}^{a} u \frac{f^{\prime}(u)}{f(u)} d u-\Omega_{A} \int_{a+\Omega_{B}}^{a} \frac{f^{\prime}(u)}{f(u)} d u
\end{aligned}
$$

Recall the proof of the "argument principle" on the winding number:

$$
\int_{a+\Omega_{B}}^{a} \frac{f^{\prime}(u)}{f(u)} d u=\int_{a+\Omega_{B}}^{a} d \log f(u)=\log f(a)-\log f\left(a+\Omega_{B}\right)
$$

Note that $f(a)=f\left(a+\Omega_{B}\right)$, BUT $\log f(a) \neq \log f\left(a+\Omega_{B}\right)$,
because of multivaluedness of \log.

$$
\begin{aligned}
\log f(a) & =\log |f(a)|+i \arg f(a), \\
\log f\left(a+\Omega_{B}\right) & =\log \left|f\left(a+\Omega_{B}\right)\right|+i \arg f\left(a+\Omega_{B}\right) \\
& =\log |f(a)|+i \arg f\left(a+\Omega_{B}\right)
\end{aligned}
$$

The argument is determined only up to $2 \pi \mathbb{Z}$.

$$
\begin{aligned}
\log f\left(a+\Omega_{B}\right)-\log f(a) & =i\left(\arg f\left(a+\Omega_{B}\right)-\arg f(a)\right) \\
& =2 \pi i n . \quad(\exists n \in \mathbb{Z})
\end{aligned}
$$

$\Longrightarrow \int_{a+\Omega_{B}}^{a} \frac{f^{\prime}(u)}{f(u)} d u=-2 \pi i n$.
$\Longrightarrow \int_{a+\Omega_{A}}^{a+\Omega_{A}+\Omega_{B}} u \frac{f^{\prime}(u)}{f(u)} d u=-\int_{a+\Omega_{B}}^{a} u \frac{f^{\prime}(u)}{f(u)} d u+2 \pi i n \Omega_{A}$.

Similarly,

$$
\begin{aligned}
\int_{a+\Omega_{A}+\Omega_{B}}^{a+\Omega_{B}} u \frac{f^{\prime}(u)}{f(u)} d u & =\int_{a+\Omega_{A}}^{a}\left(u+\Omega_{B}\right) \frac{f^{\prime}\left(u+\Omega_{B}\right)}{f\left(u+\Omega_{B}\right)} d u \\
& =-\int_{a}^{a+\Omega_{A}} u \frac{f^{\prime}(u)}{f(u)} d u-\Omega_{B} \int_{a}^{a+\Omega_{A}} \frac{f^{\prime}(u)}{f(u)} d u \\
& =-\int_{a}^{a+\Omega_{A}} u \frac{f^{\prime}(u)}{f(u)} d u+2 \pi i m \Omega_{B} . \quad(\exists m \in \mathbb{Z})
\end{aligned}
$$

Summing up,

$$
\sum_{j=1}^{N} \alpha_{j}-\sum_{j=1}^{N} \beta_{j}=\frac{1}{2 \pi i} \oint_{\partial \Pi} u \frac{f^{\prime}(u)}{f(u)} d u=n \Omega_{A}+m \Omega_{B}
$$

