Elliptic Functions

Weierstrass \wp-function

Recall that

1. an elliptic function $f(u)$ is holomorphic \Longrightarrow constant.
2. \nexists an elliptic function of order 1 .
\Longrightarrow The simplest non-trivial elliptic function has $\left\{\begin{array}{l}\text { one double pole, } \\ \text { or } \\ \text { two simple poles, }\end{array}\right.$
in a period parallelogram; $\wp(u)$ is the former, $\operatorname{sn}(u)$ is the latter.

We have defined $\wp(u)$ as

$$
\text { the inverse function of } u(z)=\int_{\infty}^{z} \frac{d x}{\sqrt{4 x^{3}-g_{2} x-g_{3}}} .
$$

Here we construct it as a doubly periodic funtion by a series.

$\S 9.1$ Construction of Weierstrass \wp-function

Notations:

- $\Omega_{1}, \Omega_{2} \in \mathbb{C}$: linearly independent over \mathbb{R}.
- $\Gamma:=\mathbb{Z} \Omega_{1}+\mathbb{Z} \Omega_{2}$.

Goal: Construct a "simple" elliptic function with double poles at Γ.

An elliptic function $f(u)$ with poles of order n at Γ is expanded as:

$$
f(u)=\frac{c}{\left(u-m_{1} \Omega_{1}-m_{2} \Omega_{2}\right)^{n}}+\cdots
$$

at $u=m_{1} \Omega_{1}+m_{2} \Omega_{2} \in \Gamma$.
\Longrightarrow The simplest candidate of elliptic functions with poles of order n at Γ :

$$
f_{n}(u):=\sum_{m_{1}, m_{2} \in \mathbb{Z}} \frac{1}{\left(u-m_{1} \Omega_{1}-m_{2} \Omega_{2}\right)^{n}}
$$

Theorem: Assume $n \geq 3$.

- The series $f_{n}(u)$ converges absolutely and uniformly on any compact set in $\mathbb{C} \backslash \Gamma$.
- $f_{n}(u)$ is an elliptic function with poles of order n at Γ.
- $f_{n}(u)$: even when n is even, odd when n is odd.

Proof:

$K \subset \mathbb{C} \backslash \Gamma$: compact.
$D_{R}:=\{z \in \mathbb{C}| | z \mid \leq R\}:$ a closed disk. (cf. Figure.)
R : sufficiently large so that $K \subset D_{R}$.

Enough to show: $f_{n, R}(u):=\sum_{\Omega \in \Gamma, \Omega \notin D_{2 R}} \frac{1}{(u-\Omega)^{n}}$ converges absolutely and uniformly on D_{R}. $\left(f_{n}=f_{n, R}+\right.$ (finite terms).)

$$
\frac{1}{(u-\Omega)^{n}}=\frac{1}{\Omega^{n}} \frac{1}{\left(\frac{u}{\Omega}-1\right)^{n}}
$$

Lemma:

1) $\exists M>0$ s.t. $\left|\frac{1}{\left(\frac{u}{\Omega}-1\right)^{n}}\right|<M$ for $u \in D_{R}, \Omega \in \Gamma \backslash D_{2 R}$.
2) $\sum_{\Omega \in \Gamma, \Omega \neq 0} \frac{1}{|\Omega|^{n}}$ converges for $n \geq 3$.

Weierstrass's M-test $\Longrightarrow f_{n, R}$ converges absolutely and uniformly on D_{R}.
Proof of 2):
r : radius of a disk with centre $0 \subsetneq$ parallelogram with vertices $\pm \Omega_{1} \pm \Omega_{2}$.
(Figure).

$P_{k}: \Gamma \cap$ (boundary of the parallelogram with vertices $\pm k \Omega_{1} \pm k \Omega_{2}$).
(Figure)

\Longrightarrow

$$
\sum_{\Omega \in \Gamma, \Omega \neq 0} \frac{1}{|\Omega|^{n}}=\sum_{k=1}^{\infty} \sum_{\Omega \in P_{k}} \frac{1}{|\Omega|^{n}}<\sum_{k=1}^{\infty} 8 k \frac{1}{k^{n} r^{n}}=\frac{8}{r^{n}} \sum_{k=1}^{\infty} \frac{1}{k^{n-1}},
$$

which converges when $n \geq 3$.
\square Lemma 2)

The second statement of the theorem \Longleftarrow the first:

- each summand in f_{n} is holomorphic in $\mathbb{C} \backslash \Gamma$ $\Longrightarrow f_{n}$ is holomorphic in $\mathbb{C} \backslash \Gamma$. (Weierstrass' theorem).
- $\frac{1}{(u-\Omega)^{n}}$ has a pole of order n at $\Omega \in \Gamma$.

The third statment:

$$
f_{n}(-u)=\sum_{\Omega \in \Gamma} \frac{1}{(-u-\Omega)^{n}}=\sum_{\Omega^{\prime}(=-\Omega) \in \Gamma} \frac{(-1)^{n}}{\left(u-\Omega^{\prime}\right)^{n}}=(-1)^{n} f_{n}(u) .
$$

\square Theorem
However, $\sum_{\Omega \in \Gamma, \Omega \neq 0} \frac{1}{|\Omega|^{2}}$ diverges \Longrightarrow Theorem is not true for $n=2$.
Need "correction" to each summand.

Theorem: The series

$$
\wp(u):=\frac{1}{u^{2}}+\sum_{\Omega \in \Gamma, \Omega \neq 0}\left(\frac{1}{(u-\Omega)^{2}}-\frac{1}{\Omega^{2}}\right)
$$

- converges absolutely and uniformly on any compact set in $\mathbb{C} \backslash \Gamma$.
- gives an even elliptic function with poles of order 2 at Γ.

Namely,

$$
\wp(u) \text { is an elliptic function of order 2: Weierstrass's } \wp \text {-function. }
$$

Proof:

We know: $f_{3}(u)=\sum_{\Omega \in \Gamma} \frac{1}{(u-\Omega)^{3}}$ is an elliptic function.
Idea: Integrate f_{3} to get \wp !

Integrate $f_{3}(u)$ without the first term $\frac{1}{u^{3}}$ from 0 :

$$
\begin{aligned}
\int_{0}^{u}\left(f_{3}(v)-\frac{1}{v^{3}}\right) d v & =\int_{0}^{u}\left(\sum_{\Omega \in \Gamma \backslash\{0\}} \frac{1}{(v-\Omega)^{3}}\right) d v \\
& =\sum_{\Omega \in \Gamma \backslash\{0\}} \int_{0}^{u} \frac{1}{(v-\Omega)^{3}} d v \quad(\Leftarrow \text { uniform convergence }) \\
& =-\frac{1}{2} \sum_{\Omega \in \Gamma \backslash\{0\}}\left(\frac{1}{(u-\Omega)^{2}}-\frac{1}{\Omega^{2}}\right)
\end{aligned}
$$

(Absolutely and uniformly convergent on a compact set $\subset(\mathbb{C} \backslash \Gamma) \cup\{0\}$. .

- $\wp(u)=\frac{1}{u^{2}}-2 \int_{0}^{u}\left(f_{3}(v)-\frac{1}{v^{3}}\right) d v$: meromorphic with poles at Γ.
- $\wp^{\prime}(u)=-2 f_{3}(u)$.
- Evenness:

$$
\begin{aligned}
\wp(-u) & =\frac{1}{(-u)^{2}}+\sum_{\Omega \in \Gamma \backslash\{0\}}\left(\frac{1}{(-u-\Omega)^{2}}-\frac{1}{\Omega^{2}}\right) \\
& =\frac{1}{u^{2}}+\sum_{\Omega \in \Gamma \backslash\{0\}}\left(\frac{1}{(u+\Omega)^{2}}-\frac{1}{\Omega^{2}}\right) \\
& =\frac{1}{u^{2}}+\sum_{\Omega^{\prime} \in \Gamma \backslash\{0\}}\left(\frac{1}{\left(u-\Omega^{\prime}\right)^{2}}-\frac{1}{\Omega^{\prime 2}}\right)=\wp(u), \quad\left(\Omega^{\prime}=-\Omega\right) .
\end{aligned}
$$

- Periodicity:
$f_{3}(u)$: elliptic function
$\Longrightarrow \wp^{\prime}\left(u+\Omega_{1}\right)=\wp^{\prime}(u), \wp^{\prime}\left(u+\Omega_{2}\right)=\wp^{\prime}(u)$.
$\Longrightarrow \exists C_{1}, C_{2}: \wp\left(u+\Omega_{1}\right)=\wp(u)+C_{1}, \wp\left(u+\Omega_{2}\right)=\wp(u)+C_{2}$.
Setting $u=-\frac{\Omega_{i}}{2}, C_{i}=\wp\left(\frac{\Omega_{i}}{2}\right)-\wp\left(-\frac{\Omega_{i}}{2}\right) \stackrel{\wp: \text { even }}{=} 0$.
- Other properties of $\wp(u)$.

Laurent expansion at $u=0$:

$$
\begin{gathered}
\wp(u)=\frac{1}{u^{2}}+\sum_{\Omega \in \Gamma \backslash\{0\}}\left(\frac{1}{(u-\Omega)^{2}}-\frac{1}{\Omega^{2}}\right) \\
=\frac{1}{u^{2}}+c_{0}+c_{2} u^{2}+\cdots+c_{2 n} u^{2 n}+\cdots . \\
c_{2 n}=\left.\frac{1}{(2 n)!} \frac{d^{2 n}}{d u^{2 n}}\right|_{u=0}\left(\sum_{\Omega \in \Gamma \backslash\{0\}}\left(\frac{1}{(u-\Omega)^{2}}-\frac{1}{\Omega^{2}}\right)\right) \\
= \begin{cases}0 & (n=0), \\
(2 n+1) \sum_{\Omega \in \Gamma \backslash\{0\}} \frac{1}{\Omega^{2 n+2}} & (n \neq 0) .\end{cases}
\end{gathered}
$$

By convention: $g_{2}:=20 c_{2}=60 \sum \frac{1}{\Omega^{4}}, g_{3}:=28 c_{4}=140 \sum \frac{1}{\Omega^{6}}$.

With these notations,

$$
\begin{aligned}
\wp(u) & =\frac{1}{u^{2}}+\frac{g_{2}}{20} u^{2}+\frac{g_{3}}{28} u^{4}+O\left(u^{6}\right) \\
\wp^{\prime}(u) & =-\frac{2}{u^{3}}+\frac{g_{2}}{10} u+\frac{g_{3}}{7} u^{3}+O\left(u^{5}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\wp^{\prime}(u)^{2} & =\frac{4}{u^{6}}-\frac{2 g_{2}}{5} \frac{1}{u^{2}}-\frac{4 g_{3}}{7}+O(u) \\
-4 \wp(u)^{3} & =-\frac{4}{u^{6}}-\frac{3 g_{2}}{5} \frac{1}{u^{2}}-\frac{3 g_{3}}{7}+O(u), \\
g_{2} \wp(u) & = \\
g_{2} \frac{1}{u^{2}} & +O\left(u^{2}\right) .
\end{aligned}
$$

Summing up,

$$
\wp^{\prime}(u)^{2}-4 \wp(u)+g_{2} \wp(u)=-g_{3}+O(u)
$$

$\wp^{\prime}(u)^{2}-4 \wp(u)+g_{2} \wp(u)$: elliptic function with possible poles at Γ.
$-g_{3}+O(u)$: no pole at 0 .
$\Longrightarrow \wp^{\prime}(u)^{2}-4 \wp(u)+g_{2} \wp(u)$: elliptic function without poles $=$ constant.
Namely, $\wp^{\prime}(u)^{2}-4 \wp(u)+g_{2} \wp(u)=-g_{3}$, or,

$$
\wp^{\prime}(u)^{2}=4 \wp(u)^{3}-g_{2} \wp(u)-g_{3} .
$$

This gives the equivalence of definitions:

$$
\frac{d \wp}{d u}=\sqrt{4 \wp^{3}-g_{2} \wp-g_{3}} \text {, i.e., } d u=\frac{d \wp}{\sqrt{4 \wp^{3}-g_{2} \wp-g_{3}}} .
$$

Integrate from $u=0(\leftrightarrow \wp(u)=\infty)$ to $u(\leftrightarrow \wp(u))$:

$$
u=\int_{\infty}^{\wp(u)} \frac{d z}{\sqrt{4 z^{3}-g_{2} z-g_{3}}} .
$$

$\Longrightarrow \wp(u)$ is the inverse function of the elliptic integral!

In fact,

$$
W: \mathbb{C} / \Gamma \ni u \mapsto\left(\wp(u), \wp^{\prime}(u)\right) \in \overline{\mathcal{R}}
$$

is the inverse of the Abel-Jacobi map $A J$.
$\overline{\mathcal{R}}:$ the elliptic curve $=$ compactification of $\left\{(z, w) \mid w^{2}=4 z^{3}-g_{2} z-g_{3}\right\}$.

Exercise: Prove the bijectivity of W as follows:
(i) Show that W is holomorphic even at $u=0$ as a map to $\overline{\mathcal{R}}$.
(ii) Show that $\wp^{\prime}\left(\Omega_{i} / 2\right)=0$ for $i=1,2,3\left(\Omega_{3}=\Omega_{1}+\Omega_{2}\right)$.
(iii) Show the bijectivity.
(Hint: $\wp(u)$ is of order 2 , i.e., takes any value $\in \mathbb{P}^{1}$ twice on \mathbb{C} / Γ.)

Exercise: Prove that any elliptic function $f(u)$ with period Γ is expressed as follows:

$$
f(u)=R_{1}(\wp(u))+R_{2}(\wp(u)) \wp^{\prime}(u), \quad R_{1}, R_{2}: \text { rational functions. }
$$

§9.2 Addition formulae of the \wp-function

Elliptic curve $\cong \mathbb{C} / \Gamma$ has an additive group structure:

$$
u_{1} \bmod \Gamma+u_{2} \bmod \Gamma=u_{1}+u_{2} \bmod \Gamma
$$

\Longrightarrow addition formulae of elliptic functions.

Theorem (Addition formula of \wp).
If $u_{1}+u_{2}+u_{3}=0($ or $\equiv 0 \bmod \Gamma)$,

$$
\left|\begin{array}{lll}
\wp^{\prime}\left(u_{1}\right) & \wp\left(u_{1}\right) & 1 \\
\wp^{\prime}\left(u_{2}\right) & \wp\left(u_{2}\right) & 1 \\
\wp^{\prime}\left(u_{3}\right) & \wp\left(u_{3}\right) & 1
\end{array}\right|=0 .
$$

(Note: $\wp^{\prime}\left(u_{3}\right)=-\wp^{\prime}\left(u_{1}+u_{2}\right), \wp\left(u_{3}\right)=\wp\left(u_{1}+u_{2}\right)$.)

Proof:

May assume $\wp\left(u_{1}\right) \neq \wp\left(u_{2}\right)$.
(\Longrightarrow analytically continued to all values afterwards.)
(a, b) : a solution of

$$
\begin{aligned}
& a \wp\left(u_{1}\right)+b=\wp^{\prime}\left(u_{1}\right), \\
& a \wp\left(u_{2}\right)+b=\wp^{\prime}\left(u_{2}\right) .
\end{aligned}
$$

Explicit formulae (not used in the proof, used in the exercise):

$$
a=\frac{\wp^{\prime}\left(u_{1}\right)-\wp^{\prime}\left(u_{2}\right)}{\wp\left(u_{1}\right)-\wp\left(u_{2}\right)}, \quad b=\frac{\wp\left(u_{1}\right) \wp^{\prime}\left(u_{2}\right)-\wp^{\prime}\left(u_{1}\right) \wp\left(u_{2}\right)}{\wp\left(u_{1}\right)-\wp\left(u_{2}\right)} .
$$

$f(u):=\wp^{\prime}(u)-a \wp(u)-b$: an elliptic function of the third order, because

- linear combination of elliptic functions.
- a third order pole (that of $\wp^{\prime}(u)$) at $u=0$.
$\Longrightarrow \exists$ three points, at which $f=0$.
We know two of them: $f\left(u_{1}\right)=f\left(u_{2}\right)=0$. Let us call the third one u_{0}.
By the general theorem for elliptic functions:

$$
u_{0}+u_{1}+u_{2} \equiv(\text { sum of poles })=0 \quad \bmod \Gamma
$$

$\Longrightarrow u_{0} \equiv u_{3} \bmod \Gamma$, i.e., $f\left(u_{3}\right)=0$.

$$
f\left(u_{1}\right)=f\left(u_{2}\right)=f\left(u_{3}\right)=0 \Leftrightarrow\left(\begin{array}{lll}
\wp^{\prime}\left(u_{1}\right) & \wp\left(u_{1}\right) & 1 \\
\wp^{\prime}\left(u_{2}\right) & \wp\left(u_{2}\right) & 1 \\
\wp^{\prime}\left(u_{3}\right) & \wp\left(u_{3}\right) & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
-a \\
-b
\end{array}\right)=0 .
$$

$\left(\begin{array}{c}1 \\ -a \\ -b\end{array}\right) \neq$
$\neq 0 \Longrightarrow$ The matrix is degenerate, i.e., det $=0$.

Corollary:

$$
\wp\left(u_{1}+u_{2}\right)=-\wp\left(u_{1}\right)-\wp\left(u_{2}\right)+\frac{1}{4}\left(\frac{\wp^{\prime}\left(u_{1}\right)-\wp^{\prime}\left(u_{2}\right)}{\wp\left(u_{1}\right)-\wp\left(u_{2}\right)}\right)^{2}
$$

Proof: Exercise.

Hint: u_{1}, u_{2} and u_{3} satisfy

$$
\wp^{\prime}(u)^{2}=4 \wp(u)^{3}-g_{2} \wp(u)-g_{3}, \quad \wp^{\prime}(u)=a \wp(u)+b .
$$

$\Longrightarrow \wp\left(u_{1}\right), \wp\left(u_{2}\right)$ and $\wp\left(u_{3}\right)$ satisfy a cubic equation.

Remark: The addition formula has a geometric interpretation.
(cf. Exercise.)

