Elliptic Functions

Weierstrass &-function

Recall that

- 1. an elliptic function f(u) is holomorphic \Longrightarrow constant.
- 2. $\not\exists$ an elliptic function of order 1.

 $\Longrightarrow \text{The simplest non-trivial elliptic function has} \begin{cases} \text{one double pole,} \\ \text{or} \\ \text{two simple poles,} \end{cases}$

in a period parallelogram; $\wp(u)$ is the former, $\operatorname{sn}(u)$ is the latter.

We have defined $\wp(u)$ as

the inverse function of
$$u(z) = \int_{\infty}^{z} \frac{dx}{\sqrt{4x^3 - g_2x - g_3}}$$
.

Here we construct it as a doubly periodic funtion by a series.

§9.1 Construction of Weierstrass &-function

Notations:

- $\Omega_1, \Omega_2 \in \mathbb{C}$: linearly independent over \mathbb{R} .
- $\bullet \ \Gamma := \mathbb{Z}\Omega_1 + \mathbb{Z}\Omega_2.$

<u>Goal</u>: Construct a "simple" elliptic function with double poles at Γ .

An elliptic function f(u) with poles of order n at Γ is expanded as:

$$f(u) = \frac{c}{(u - m_1\Omega_1 - m_2\Omega_2)^n} + \cdots$$

at $u=m_1\Omega_1+m_2\Omega_2\in\Gamma$.

 \Longrightarrow The simplest candidate of elliptic functions with poles of order n at Γ :

$$f_n(u) := \sum_{m_1, m_2 \in \mathbb{Z}} \frac{1}{(u - m_1 \Omega_1 - m_2 \Omega_2)^n}.$$

Theorem: Assume $n \geq 3$.

- The series $f_n(u)$ converges absolutely and uniformly on any compact set in $\mathbb{C} \setminus \Gamma$.
- $f_n(u)$ is an elliptic function with poles of order n at Γ .
- $f_n(u)$: even when n is even, odd when n is odd.

Proof:

 $K\subset \mathbb{C}\smallsetminus \Gamma$: compact.

 $D_R := \{z \in \mathbb{C} \mid |z| \leq R\}$: a closed disk. (cf. Figure.)

R: sufficiently large so that $K \subset D_R$.

Enough to show: $f_{n,R}(u):=\sum_{\Omega\in\Gamma,\ \Omega\not\in D_{2R}}\frac{1}{(u-\Omega)^n}$ converges absolutely and uniformly on D_{R} (f=f , n+ (finite terms).)

and uniformly on D_R . $(f_n = f_{n,R} + \text{ (finite terms).)}$

$$\frac{1}{(u-\Omega)^n} = \frac{1}{\Omega^n} \frac{1}{(\frac{u}{\Omega}-1)^n}.$$

Lemma:

1)
$$\exists M > 0 \text{ s.t. } \left| \frac{1}{(\frac{u}{\Omega} - 1)^n} \right| < M \text{ for } u \in D_R, \ \Omega \in \Gamma \setminus D_{2R}.$$

2) $\sum_{\Omega \in \Gamma, \ \Omega \neq 0} \frac{1}{|\Omega|^n}$ converges for $n \geq 3$.

Weierstrass's M-test $\Longrightarrow f_{n,R}$ converges absolutely and uniformly on D_R .

Proof of 2):

r: radius of a disk with centre $0 \subseteq \text{parallelogram}$ with vertices $\pm \Omega_1 \pm \Omega_2$.

(Figure).

 P_k : $\Gamma \cap$ (boundary of the parallelogram with vertices $\pm k\Omega_1 \pm k\Omega_2$).

(Figure)

 \Longrightarrow

$$\sum_{\Omega \in \Gamma, \ \Omega \neq 0} \frac{1}{|\Omega|^n} = \sum_{k=1}^{\infty} \sum_{\Omega \in P_k} \frac{1}{|\Omega|^n} < \sum_{k=1}^{\infty} 8k \frac{1}{k^n r^n} = \frac{8}{r^n} \sum_{k=1}^{\infty} \frac{1}{k^{n-1}},$$

which converges when $n \geq 3$.

□Lemma 2)

The second statement of the theorem \iff the first:

- each summand in f_n is holomorphic in $\mathbb{C} \setminus \Gamma$ $\Longrightarrow f_n$ is holomorphic in $\mathbb{C} \setminus \Gamma$. (Weierstrass' theorem).
- $\bullet \ \frac{1}{(u-\Omega)^n} \ \text{has a pole of order} \ n \ \text{at} \ \Omega \in \Gamma.$

The third statment:

$$f_n(-u) = \sum_{\Omega \in \Gamma} \frac{1}{(-u - \Omega)^n} = \sum_{\Omega' (=-\Omega) \in \Gamma} \frac{(-1)^n}{(u - \Omega')^n} = (-1)^n f_n(u).$$

 $\Box\mathsf{Theorem}$

However, $\sum_{\Omega \in \Gamma, \ \Omega \neq 0} \frac{1}{|\Omega|^2}$ diverges! \Longrightarrow Theorem is not true for n=2.

Need "correction" to each summand.

<u>Theorem</u>: The series

$$\wp(u) := \frac{1}{u^2} + \sum_{\Omega \in \Gamma, \ \Omega \neq 0} \left(\frac{1}{(u - \Omega)^2} - \frac{1}{\Omega^2} \right)$$

- converges absolutely and uniformly on any compact set in $\mathbb{C} \setminus \Gamma$.
- ullet gives an even elliptic function with poles of order 2 at Γ .

Namely,

 $\wp(u)$ is an elliptic function of order 2: Weierstrass's \wp -function.

Proof:

We know: $f_3(u) = \sum_{\Omega \in \Gamma} \frac{1}{(u - \Omega)^3}$ is an elliptic function.

Idea: Integrate f_3 to get \wp !

Integrate $f_3(u)$ without the first term $\frac{1}{u^3}$ from 0:

$$\begin{split} \int_0^u \left(f_3(v) - \frac{1}{v^3} \right) \, dv &= \int_0^u \left(\sum_{\Omega \in \Gamma \smallsetminus \{0\}} \frac{1}{(v - \Omega)^3} \right) \, dv \\ &= \sum_{\Omega \in \Gamma \smallsetminus \{0\}} \int_0^u \frac{1}{(v - \Omega)^3} \, dv \qquad (\Leftarrow \text{uniform convergence}) \\ &= -\frac{1}{2} \sum_{\Omega \in \Gamma \smallsetminus \{0\}} \left(\frac{1}{(u - \Omega)^2} - \frac{1}{\Omega^2} \right). \end{split}$$

(Absolutely and uniformly convergent on a compact set $\subset (\mathbb{C} \setminus \Gamma) \cup \{0\}$.)

 \Longrightarrow

•
$$\wp(u) = \frac{1}{u^2} - 2 \int_0^u \left(f_3(v) - \frac{1}{v^3} \right) dv$$
: meromorphic with poles at Γ .

$$\bullet \wp'(u) = -2f_3(u).$$

• Evenness:

$$\wp(-u) = \frac{1}{(-u)^2} + \sum_{\Omega \in \Gamma \setminus \{0\}} \left(\frac{1}{(-u - \Omega)^2} - \frac{1}{\Omega^2} \right)$$

$$= \frac{1}{u^2} + \sum_{\Omega \in \Gamma \setminus \{0\}} \left(\frac{1}{(u + \Omega)^2} - \frac{1}{\Omega^2} \right)$$

$$= \frac{1}{u^2} + \sum_{\Omega' \in \Gamma \setminus \{0\}} \left(\frac{1}{(u - \Omega')^2} - \frac{1}{\Omega'^2} \right) = \wp(u), \qquad (\Omega' = -\Omega).$$

Periodicity:

 $f_3(u)$: elliptic function

$$\Longrightarrow \wp'(u+\Omega_1)=\wp'(u), \ \wp'(u+\Omega_2)=\wp'(u).$$

$$\Longrightarrow \exists C_1, C_2: \wp(u + \Omega_1) = \wp(u) + C_1, \wp(u + \Omega_2) = \wp(u) + C_2.$$

Setting
$$u=-\frac{\Omega_i}{2}$$
, $C_i=\wp\left(\frac{\Omega_i}{2}\right)-\wp\left(-\frac{\Omega_i}{2}\right)\stackrel{\wp: \, \text{even}}{=} 0.$

• Other properties of $\wp(u)$.

Laurent expansion at u = 0:

$$\wp(u) = \frac{1}{u^2} + \sum_{\Omega \in \Gamma \setminus \{0\}} \left(\frac{1}{(u - \Omega)^2} - \frac{1}{\Omega^2} \right)$$

$$= \frac{1}{u^2} + c_0 + c_2 u^2 + \dots + c_{2n} u^{2n} + \dots$$

$$c_{2n} = \frac{1}{(2n)!} \frac{d^{2n}}{du^{2n}} \bigg|_{u=0} \left(\sum_{\Omega \in \Gamma \setminus \{0\}} \left(\frac{1}{(u - \Omega)^2} - \frac{1}{\Omega^2} \right) \right)$$

$$= \begin{cases} 0 & (n = 0), \\ (2n + 1) \sum_{\Omega \in \Gamma \setminus \{0\}} \frac{1}{\Omega^{2n+2}} & (n \neq 0). \end{cases}$$

By convention:
$$g_2 := 20c_2 = 60 \sum \frac{1}{\Omega^4}$$
, $g_3 := 28c_4 = 140 \sum \frac{1}{\Omega^6}$.

With these notations,

$$\wp(u) = \frac{1}{u^2} + \frac{g_2}{20}u^2 + \frac{g_3}{28}u^4 + O(u^6),$$

$$\wp'(u) = -\frac{2}{u^3} + \frac{g_2}{10}u + \frac{g_3}{7}u^3 + O(u^5).$$

Hence,

$$\wp'(u)^{2} = \frac{4}{u^{6}} - \frac{2g_{2}}{5} \frac{1}{u^{2}} - \frac{4g_{3}}{7} + O(u),$$

$$-4\wp(u)^{3} = -\frac{4}{u^{6}} - \frac{3g_{2}}{5} \frac{1}{u^{2}} - \frac{3g_{3}}{7} + O(u),$$

$$g_{2}\wp(u) = g_{2}\frac{1}{u^{2}} + O(u^{2}).$$

Summing up,

$$\wp'(u)^2 - 4\wp(u) + g_2 \wp(u) = -g_3 + O(u).$$

 $\wp'(u)^2 - 4\wp(u) + g_2 \wp(u)$: elliptic function with possible poles at Γ . $-g_3 + O(u)$: no pole at 0.

 $\implies \wp'(u)^2 - 4\wp(u) + g_2 \wp(u)$: elliptic function without poles = constant.

Namely, $\wp'(u)^2 - 4\wp(u) + g_2 \wp(u) = -g_3$, or,

$$\wp'(u)^2 = 4\wp(u)^3 - g_2 \wp(u) - g_3.$$

This gives the equivalence of definitions:

$$\frac{d\wp}{du} = \sqrt{4\wp^3 - g_2\wp - g_3}$$
, i.e., $du = \frac{d\wp}{\sqrt{4\wp^3 - g_2\wp - g_3}}$.

Integrate from u=0 ($\leftrightarrow \wp(u)=\infty$) to u ($\leftrightarrow \wp(u)$):

$$u = \int_{\infty}^{\wp(u)} \frac{dz}{\sqrt{4z^3 - g_2 z - g_3}}.$$

 $\Longrightarrow \wp(u)$ is the inverse function of the elliptic integral!

In fact,

$$W: \mathbb{C}/\Gamma \ni u \mapsto (\wp(u), \wp'(u)) \in \bar{\mathcal{R}}$$

is the inverse of the Abel-Jacobi map AJ.

 $\bar{\mathcal{R}}$: the elliptic curve = compactification of $\{(z,w) \mid w^2 = 4z^3 - g_2 z - g_3\}$.

Exercise: Prove the bijectivity of W as follows:

- (i) Show that W is holomorphic even at u=0 as a map to $\bar{\mathcal{R}}$.
- (ii) Show that $\wp'(\Omega_i/2) = 0$ for i = 1, 2, 3 $(\Omega_3 = \Omega_1 + \Omega_2)$.
- (iii) Show the bijectivity.

(Hint: $\wp(u)$ is of order 2, i.e., takes any value $\in \mathbb{P}^1$ twice on \mathbb{C}/Γ .)

Exercise: Prove that any elliptic function f(u) with period Γ is expressed as follows:

$$f(u) = R_1(\wp(u)) + R_2(\wp(u)) \wp'(u), \quad R_1, R_2 : \text{ rational functions.}$$

§9.2 Addition formulae of the \wp -function

Elliptic curve $\cong \mathbb{C}/\Gamma$ has an additive group structure:

$$u_1 \mod \Gamma + u_2 \mod \Gamma = u_1 + u_2 \mod \Gamma.$$

⇒ addition formulae of elliptic functions.

Theorem (Addition formula of \wp).

If
$$u_1 + u_2 + u_3 = 0 \text{ (or } \equiv 0 \mod \Gamma)$$
,

$$\begin{vmatrix} \wp'(u_1) & \wp(u_1) & 1 \\ \wp'(u_2) & \wp(u_2) & 1 \\ \wp'(u_3) & \wp(u_3) & 1 \end{vmatrix} = 0.$$

(Note:
$$\wp'(u_3) = -\wp'(u_1 + u_2)$$
, $\wp(u_3) = \wp(u_1 + u_2)$.)

Proof:

May assume $\wp(u_1) \neq \wp(u_2)$.

 $(\Longrightarrow$ analytically continued to all values afterwards.)

(a,b): a solution of

$$a\wp(u_1) + b = \wp'(u_1),$$

$$a\wp(u_2) + b = \wp'(u_2).$$

Explicit formulae (not used in the proof, used in the exercise):

$$a = \frac{\wp'(u_1) - \wp'(u_2)}{\wp(u_1) - \wp(u_2)}, \qquad b = \frac{\wp(u_1)\wp'(u_2) - \wp'(u_1)\wp(u_2)}{\wp(u_1) - \wp(u_2)}.$$

 $f(u) := \wp'(u) - a\wp(u) - b$: an elliptic function of the third order, because

- linear combination of elliptic functions.
- a third order pole (that of $\wp'(u)$) at u=0.

 $\Longrightarrow \exists$ three points, at which f = 0.

We know two of them: $f(u_1) = f(u_2) = 0$. Let us call the third one u_0 .

By the general theorem for elliptic functions:

$$u_0 + u_1 + u_2 \equiv (\text{sum of poles}) = 0 \mod \Gamma.$$

$$\Longrightarrow u_0 \equiv u_3 \mod \Gamma$$
, i.e., $f(u_3) = 0$.

$$f(u_1) = f(u_2) = f(u_3) = 0 \Leftrightarrow \begin{pmatrix} \wp'(u_1) & \wp(u_1) & 1 \\ \wp'(u_2) & \wp(u_2) & 1 \\ \wp'(u_3) & \wp(u_3) & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -a \\ -b \end{pmatrix} = 0.$$

$$\begin{pmatrix} 1 \\ -a \\ -b \end{pmatrix} \neq 0 \Longrightarrow \mathsf{The\ matrix\ is\ degenerate,\ i.e.,\ det} = 0.$$

Corollary:

$$\wp(u_1 + u_2) = -\wp(u_1) - \wp(u_2) + \frac{1}{4} \left(\frac{\wp'(u_1) - \wp'(u_2)}{\wp(u_1) - \wp(u_2)} \right)^2.$$

Proof: Exercise.

Hint: u_1 , u_2 and u_3 satisfy

$$\wp'(u)^2 = 4\wp(u)^3 - g_2\wp(u) - g_3, \qquad \wp'(u) = a\wp(u) + b.$$

 $\Longrightarrow \wp(u_1)$, $\wp(u_2)$ and $\wp(u_3)$ satisfy a cubic equation.

Remark: The addition formula has a geometric interpretation.

(cf. Exercise.)