Elliptic Integrals and Elliptic Functions

Takashi Takebe

23 November 2021

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:
(your final mark)

$$
=\min \left\{15 \times \frac{\text { total points you get }}{\text { max. possible points up to the problem } \mathbf{1 5}}, 10\right\} .
$$

This means that 16 - $\mathbf{1 8}$ are bonus problems.

- This rule is subject to change and the latest rule applies.
- The deadline of $\mathbf{1 4 - 1 8}$: 30 November 2021. (Send the scan or the photo to Takebe.)

The periods of elliptic functions in this sheet is Ω_{1} and Ω_{2}. We denote the period lattice $\mathbb{Z} \Omega_{1}+\mathbb{Z} \Omega_{2}$ by Γ. The notations are the same as those in the seminar on 23 November 2021.
14. (1 pt.) (i) Show that $\wp^{\prime}\left(\frac{\Omega_{i}}{2}\right)=0\left(i=1,2,3 ; \Omega_{3}:=\Omega_{1}+\Omega_{2}\right)$.
(ii) Show that $e_{i}:=\wp\left(\frac{\Omega_{i}}{2}\right)$ satisfy the following relations.

$$
e_{1}+e_{2}+e_{3}=0, \quad e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}=-\frac{g_{2}}{4}, \quad e_{1} e_{2} e_{3}=\frac{g_{3}}{4} .
$$

15. (1 pt.) Let $\overline{\mathcal{R}}$ be the elliptic curve, which is the compactification of $\{(z, w) \mid$ $\left.w^{2}=4 z^{3}-g_{2} z-g_{3}\right\}$. Prove that the map defined by

$$
W: \mathbb{C} / \Gamma \ni u \mapsto\left(\wp(u), \wp^{\prime}(u)\right) \in \overline{\mathcal{R}}
$$

is an isomorphism of Riemann surfaces as follows. (In fact, this is the inverse of the Abel-Jacobi map $A J$.)
(i) Show that W is holomorphic (even at $u=0$) as a map to $\overline{\mathcal{R}}$. (Hint: In order to show that W is a holomorphic map in a neighbourhood of $u_{0} \in \mathbb{C} / \Gamma$, one should use u as a local coordinate of \mathbb{C} / Γ and choose an appropriate local coordinate of $\overline{\mathcal{R}}$ in a neighbourhood of $W\left(u_{0}\right)$.)
(ii) Show the bijectivity. (Hint: $\wp(u)$ is even and of order 2, i.e., takes any value $\in \mathbb{P}^{1}$ twice on \mathbb{C} / Γ. One also needs $\mathbf{1 4}$ (i) at several points.)
16. (1 pt.) Let $f(u)$ be an elliptic function.
(i) Suppose f is an even function and $\Omega \in \Gamma$. Show that, if $f(\Omega / 2)=0$ (resp. $\Omega / 2$ is a pole of f), then $\Omega / 2$ is a zero (resp. a pole) of even order.
(ii) Suppose f is an even function. Let $\left\{a_{1}, \ldots, a_{N}\right\}$ be the set of all distinct zeros in the period parallelogram. Since f is an even function, $-a_{i}$ is also zeros of f. Therefore, for each $i(i=1, \ldots, N)$ there exists $i^{\prime}\left(i^{\prime}=1, \ldots, N\right)$ such that $a_{i^{\prime}} \equiv-a_{i} \bmod \Gamma$. This $a_{i^{\prime}}$ coincides a_{i} if and only if $2 a_{i} \in \Gamma$. Hence we can renumber a_{i} 's so that

$$
\begin{aligned}
2 a_{i} & \in \Gamma, & i & =N^{\prime}+1, \ldots, N-N^{\prime} \\
a_{i} & \equiv-a_{N-i+1} \bmod \Gamma, & i & =N-N^{\prime}+1, \ldots, N .
\end{aligned}
$$

Namely, we decompose the set $\left\{a_{1}, \ldots, a_{N}\right\}$ of distinct zeros into two parts: N^{\prime} pairs $\left(a_{1}, a_{N}\right), \ldots,\left(a_{N^{\prime}}, a_{N-N^{\prime}+1}\right)$, which satisfy $a_{i}+a_{N-i+1} \equiv 0$ and remaining zeros $a_{N^{\prime}+1}, \ldots, a_{N-N^{\prime}+1}$, which satisfy $2 a_{i} \in \Gamma$.

Similarly the set $\left\{b_{1}, \ldots, b_{M}\right\}$ of all distinct poles in the period parallelogram can be decomposed into two parts:

$$
\begin{array}{rlrl}
2 b_{j} & \in \Gamma, & j & =M^{\prime}+1, \ldots, M-M^{\prime}, \\
b_{j} \equiv-b_{M-j+1} \bmod \Gamma, & j & =M-M^{\prime}+1, \ldots, M .
\end{array}
$$

We denote the order of a_{i} (resp. b_{j}) by n_{i} (resp. k_{j}) and define the integers m_{i} and l_{j} as follows:

$$
m_{i}:=\left\{\begin{array}{ll}
n_{i} & \left(2 a_{i} \notin \Gamma\right), \\
n_{i} / 2 & \left(2 a_{i} \in \Gamma\right),
\end{array} \quad l_{j}:= \begin{cases}k_{j} & \left(2 b_{j} \notin \Gamma\right), \\
k_{j} / 2 & \left(2 b_{j} \in \Gamma\right) .\end{cases}\right.
$$

Show that there exists a complex number C such that

$$
f(u)=C \frac{\prod_{i=1}^{N-N^{\prime}}\left(\wp(u)-\wp\left(a_{i}\right)\right)^{m_{i}}}{\prod_{j=1}^{M-M^{\prime}}\left(\wp(u)-\wp\left(b_{j}\right)\right)^{l_{j}}} .
$$

(Hint: Show that the ratio of both sides is a holomorphic elliptic function and use Liouville's theorem.)
(iii) Show that an odd elliptic function $f(u)$ is a product of $\wp^{\prime}(u)$ with a rational function of $\wp(u)$. Combining this result with (ii), show that an arbitrary elliptic function $f(u)$ is expressed as

$$
f(u)=R_{1}(\wp(u))+R_{2}(\wp(u)) \wp^{\prime}(u),
$$

where R_{1} and R_{2} are rational functions. (Hint: To prove the last statement, show and use the fact that any elliptic function is a sum of an even elliptic function and an odd elliptic function.)
17.
(1 pt.) Show the following addition formula, using the differential equation of $\wp(u)$ and the proof of the addition formula in the lecture:

$$
\wp\left(u_{1}+u_{2}\right)=-\wp\left(u_{1}\right)-\wp\left(u_{2}\right)+\frac{1}{4}\left(\frac{\wp^{\prime}\left(u_{1}\right)-\wp^{\prime}\left(u_{2}\right)}{\wp\left(u_{1}\right)-\wp\left(u_{2}\right)}\right)^{2} .
$$

(Hint: u_{i} 's $\left(i=1,2,3 ; u_{3}\right.$ was defined in the seminar.) satisfy

$$
\wp^{\prime}\left(u_{i}\right)^{2}=4 \wp\left(u_{i}\right)^{3}-g_{2} \wp\left(u_{i}\right)-g_{3}, \quad \wp^{\prime}\left(u_{i}\right)=a \wp\left(u_{i}\right)+b
$$

Hence $\wp\left(u_{i}\right)$'s satisfy a cubic equation.)
18.
(1 pt.) Re-interpreting the proof of the addtion formula of $\wp(u)$ in the seminar, show that one can define an abelian group structure of the elliptic curve $\overline{\mathcal{R}}:=\overline{\left\{(z, w) \mid w^{2}=4 z^{3}-g_{2} z-g_{3}\right\}}$, as follows:
(i) The unit element \mathbf{O} is the point $\infty\left(=[0: 0: 1] \in \mathbb{P}^{2}\right)$.
(ii) Three points P_{1}, P_{2}, P_{3} on $\overline{\mathcal{R}}$ satisfy $P_{1}+P_{2}+P_{3}=\mathbf{O} . \Longleftrightarrow$ There exists a line passing through P_{1}, P_{2} and P_{3}.

