- **Задача 1.** Докажите, что дифференцирования $\frac{\partial}{\partial t_i}$ и $\frac{\partial}{\partial t_j}$ кольца многочленов $\mathbf{k}[t_1,...,t_n]$ коммутируют между собой, то есть $\frac{\partial}{\partial t_i} \circ \frac{\partial}{\partial t_j} = \frac{\partial}{\partial t_i} \circ \frac{\partial}{\partial t_j}$.
- **Задача 2.** Из курса матанализа известна формула Тейлора для многочлена Q(t) от одной переменной над полем \mathbf{k} . Напишите ее обобщение для случая многочлена $Q(t_1,...,t_n)$ от n переменных над \mathbf{k} .

Далее всюду предполагается, что $\mathbf{k} = \overline{\mathbf{k}}$, $\mathrm{char} \mathbf{k} \neq 2$.

- Задача 3. Пусть \mathcal{C} невырожденная коника в \mathbb{P}^2 . Пусть в 6-угольнике $ABCA_1B_1C_1$ две точки A и B совпали. Дайте синтетическое (т.е. невычислительное) доказательство теоремы Паскаля для такого 6-угольника (утверждающей, что три точки пересечения пар противоположных его сторон, то есть точки $M = (AB) \cap (A_1B_1)$, $N = (BC) \cap (B_1C_1)$, $P = (CA_1) \cap (C_1A)$, коллинеарны), если под его стороной AB понимать касательную $\mathbb{T}_A\mathcal{C}$ к конике \mathcal{C} в точке A.
- Задача 4. В условиях предыдущей задачи пусть коника $\mathcal C$ задана уравнением $\{\sum_{i,j=0}^2 a_{ij}x_ix_j=xAx^T=0\}$, где $x=(x_0,x_1,x_2)^T$ строка однородных координат в $\mathbb P^2$, $A=(a_{ij})$ невырожденная симметрическая (3×3) -матрица, а точка y имеет координаты $(y_0:y_1:y_2)$. На семинаре мы установили, что уравнение поляры p_y точки y относительно коники $\mathcal C$ есть линейное по координатам $(x_0:x_1:x_2)$ точки x уравнение вида $\{xAy^T=0\}$.
- 1) Докажите, что если $y \not\in \mathcal{C}$, то поляра p_y пересекает конику \mathcal{C} в двух различных точках.
- 2) Докажите, что если $y \in \mathcal{C}$, то поляра p_y имеет с \mathcal{C} единственную общую точку y, то есть $p_y = \mathbb{T}_y \mathcal{C}$.
- Задача 5. В условиях задачи 3 пусть $\check{\mathcal{C}}$ двойственная коника к конике \mathcal{C} , лежащая в двойственной проективной плоскости $\check{\mathbb{P}}^2$. (Определение двойственной коники $\check{\mathcal{C}}$ было дано на семинаре.) Сформулируйте для исходной коники \mathcal{C} теорему, двойственную к теореме Паскаля для двойственной коники $\check{\mathcal{C}}$. (Эта теорема называется теоремой Брианшона для коники \mathcal{C} .)