Семинар 1.

Этом домашнее задание состоит из задач, связанных с конструкцией Штейнера невырожденной квадрики в \mathbb{P}^3 . Для формулировки задач напомним необходимые обозначения, которые были введены на семинаре.

В пространстве \mathbb{P}^3 фиксированы две скрещивающиеся прямые l_1 и l_2 и рассматриваются пучки плоскостей l_1 и l_2 , проходящих через эти прямые. Как мы знаем из обсуждения на семинаре, плоскости этих пучков соответствуют точкам прямых \check{l}_1 и \check{l}_2 в двойственном проективном пространстве $\check{\mathbb{P}}^3$. Зафиксируем проективное отображение $f:\check{l}_1\stackrel{\sim}{\to}\check{l}_2$. Невырожденная квадрика по Штейнеру Q определяется как множество точек в \mathbb{P}^3 , образуемое прямыми $\pi \cap f(\pi)$ пересечения пар соответственных плоскостей $\pi \in \check{l}_1$ и $f(\pi) \in \check{l}_2$ в пучках, то есть $Q = \bigcup_{\check{i}} (\pi \cap f(\pi))$.

Мы установили на семинаре, что эта конструкция квадрики Q равносильна следующей. Рассмотрим проективные отображения между прямыми $g_1: \check{l}_1 \stackrel{\sim}{\to} l_2, \ \pi \mapsto \pi \cap l_2$ и $g_2: \check{l}_2 \stackrel{\sim}{\to} l_1, \ \rho \mapsto \rho \cap l_1,$ и композицию $\tilde{f} = g_2 \circ f \circ g_1^{-1}: l_2 \stackrel{\sim}{\to} l_1$. Тогда квадрика Q получается как множество прямых $l(x) := \langle x, \tilde{f}(x) \rangle$, соединяющих точки x прямой l_2 с точками $\tilde{f}(x)$ прямой l_1 : $Q = \bigcup_{i=1}^{n-1} l(x)$.

- **Задача 1.** 1) Докажите, что для любых двух различных точек $x, x' \in l_2$ прямые l(x) и l(x') не пересекаются.
- 2) Зафиксируем три различные точки x_0 , x_1 , x_2 на прямой l_2 . На прямой $l(x_0)$ возьмем произвольную точку y_0 , отличную от x_0 и $\tilde{f}(x_0)$. Докажите, что через точку x_0 проходит единственная прямая, обозначаемая через m_{y_0} , пересекающая прямые $l(x_1)$ и $l(x_2)$.
- **Задача 2.** В обозначениях задачи 1 докажите, что прямая m_{y_0} пересекает прямую l(x) для любой точки $x \in l_2$.
 - **Задача 3.** В предыдущих обозначениях докажите, что m_{y_0} лежит на Q для любой точки $y_0 \in l_2$.
 - **Задача 4.** Докажите, что $Q = \bigcup_{y_0 \in l(x_0)} m_{y_0}$.
- **Задача 5.** Докажите, что если прямая l в \mathbb{P}^3 имеет с квадрикой Q по крайней мере три различные общие точки, то она лежит на Q. Выведите отсюда, что степень квадрики Q равна 2. (Под степенью квадрики Q понимается степень неприводимого однородного многочлена F от проективных координат x_0, x_1, x_2, x_3 в \mathbb{P}^3 , где Q задается уравнением $F(x_0, x_1, x_2, x_3) = 0$.)
 - **Задача 6.** Напишите уравнение квадрики Q в \mathbb{P}^3 .