Seminar works 1-3: holomorphic functions, Cauchy formula, Taylor series, Hartogs theorem

February 2, 2022

Problem 1. Find the \mathbb{C}-linear and \mathbb{C}-antilinear parts of the following \mathbb{R} - linear operators $L: \mathbb{C}^{2} \rightarrow \mathbb{C}$, here $z=\left(z_{1}, z_{2}\right), z_{k}=x_{k}+i y_{k}:$
a) $L(z)=x_{1}+y_{1}$;
b) $L(z)=x_{1}+y_{2}$;
c) $L(z)=x_{1}+2 i y_{2}$;
d) Homework: $(1+i) x_{1}+i y_{1}+2 x_{2}+3 y_{2}$.

Problem 2. Are the following functions of two variables $f(z)=f\left(z_{1}, z_{2}\right)$ holomorphic at the origin?
a) $f(z)=x_{1}+i y_{2}$;
b) $f(z)=x_{1}^{2}+2 i x_{1} y_{1}+y_{1}^{2}$;
c) $f(z)=x_{1}^{2}+2 i x_{1} y_{1}-y_{1}^{2}$;
d) $f(z)=\frac{z_{1}+z_{2}}{1+z_{1}}$;
e) Homework $f(z)=\frac{z_{1}^{2}+z_{2}^{3}}{z_{1}^{2}+z_{2}^{2}}$;
f) Homework $f(z)=\frac{z_{1}^{4}+z_{2}^{4}}{z_{1}^{2}+z_{2}^{2}}$.

Problem 3. Find which ones of the above functions are
a) continuous in a neighborhood of zero;
b) separately holomorphic (that is, holomorphic in each individual variable z_{k}) in a neighborhood of the origin.
Problem 4. Calculate the following integrals:
a) $\oint_{\{|z|=1\}} \frac{\sin \zeta+1}{\zeta} d \zeta, z \in \mathbb{C}$;
b) $\oint_{\left\{\left|z_{1}\right|=1\right\}} \oint_{\left\{\left|z_{2}\right|=1\right\}} \frac{\zeta_{1}+\zeta_{2}}{\zeta_{1}-\frac{1}{2}} d \zeta_{1} d \zeta_{2}$;
c) $\oint_{\left\{\left|z_{1}\right|=1\right\}} \oint_{\left\{\left|z_{2}\right|=1\right\}} \frac{\zeta_{1}+\zeta_{2}+1}{\zeta_{1}\left(\zeta_{2}-\frac{1}{2}\right)}$;
d) Homework $\oint_{\left\{\left|z_{1}\right|=1\right\}} \oint_{\left\{\left|z_{2}\right|=\frac{1}{3}\right\}} \frac{\cos \zeta_{1}+\zeta_{2}}{\zeta_{1}\left(\zeta_{2}-\frac{1}{2}\right)}$.

Problem 5. Write the Taylor series for the following functions at the origin. Find their convergence domains and all the values of multiradii of convergence polydisks.
a) $f(z)=\frac{1}{1-z_{1} z_{2}^{2}}$;
b) $f(z)=\frac{1}{1-z_{1}-z_{2}^{2}}$;
c) $f(z)=\frac{1}{\left(1-z_{1}\right)\left(1+z_{2}\right)}$;
d) Homework $f(z)=\frac{1}{\left(1-\left(z_{1}+z_{2}\right)^{2}\right)\left(1-z_{2}\right)}$;
e) Homework $f(z)=\sin \left(z_{1}+z_{2}^{2}\right)$.

