Seminar works 1–3: holomorphic functions, Cauchy formula, Taylor series, Hartogs theorem

February 2, 2022

Problem 1. Find the \mathbb{C} -linear and \mathbb{C} -antilinear parts of the following \mathbb{R} - linear operators $L: \mathbb{C}^2 \to \mathbb{C}$, here $z = (z_1, z_2), z_k = x_k + iy_k$:

a) $L(z) = x_1 + y_1;$

b) $L(z) = x_1 + y_2;$

c) $L(z) = x_1 + 2iy_2;$

d) Homework: $(1+i)x_1 + iy_1 + 2x_2 + 3y_2$.

Problem 2. Are the following functions of two variables $f(z) = f(z_1, z_2)$ holomorphic at the origin?

a)
$$f(z) = x_1 + iy_2;$$

b) $f(z) = x_1^2 + 2ix_1y_1 + y_1^2;$
c) $f(z) = x_1^2 + 2ix_1y_1 - y_1^2;$
d) $f(z) = \frac{z_1 + z_2}{1 + z_1};$
e) Homework $f(z) = \frac{z_1^2 + z_2^3}{z_1^2 + z_2^2};$
f) Homework $f(z) = \frac{z_1^4 + z_2^4}{z_1^2 + z_2^2}.$

Problem 3. Find which ones of the above functions are

a) continuous in a neighborhood of zero;

b) separately holomorphic (that is, holomorphic in each individual variable z_k) in a neighborhood of the origin.

Problem 4. Calculate the following integrals:

a)
$$\oint_{\{|z|=1\}} \frac{\sin\zeta+1}{\zeta} d\zeta, \ z \in \mathbb{C};$$

b) $\oint_{\{|z_1|=1\}} \oint_{\{|z_2|=1\}} \frac{\zeta_1+\zeta_2}{\zeta_1-\frac{1}{2}} d\zeta_1 d\zeta_2;$
c) $\oint_{\{|z_1|=1\}} \oint_{\{|z_2|=1\}} \frac{\zeta_1+\zeta_2+1}{\zeta_1(\zeta_2-\frac{1}{2})};$
d) Homework $\oint_{\{|z_1|=1\}} \oint_{\{|z_2|=\frac{1}{3}\}} \frac{\cos\zeta_1+\zeta_2}{\zeta_1(\zeta_2-\frac{1}{2})}.$

Problem 5. Write the Taylor series for the following functions at the origin. Find their convergence domains and all the values of multiradii of convergence polydisks.

a)
$$f(z) = \frac{1}{1-z_1z_2^2};$$

b) $f(z) = \frac{1}{1-z_1-z_2^2};$
c) $f(z) = \frac{1}{(1-z_1)(1+z_2)};$
d) Homework $f(z) = \frac{1}{(1-(z_1+z_2)^2)(1-z_2)};$
e) Homework $f(z) = \sin(z_1 + z_2^2).$