CRITICAL POINTS, 15.02

V.A. VASSILIEV

1. Other definitions of Milnor Number of isolated singularity

1.1. Definition 2. Index of gradient map. $f : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ analytic, has isolated singularity at 0. Let B_{ε} be a ball in \mathbb{C}^n centered at 0, containing no other critical points. The gradient vector field

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{\partial}{\partial x_i}$$

(normed) defines a continuous map $S_{\varepsilon}^{2n-1} \rightarrow S_{1}^{2n-1}$. The index of this map is equal to Milnor number.

Example: for Morse singularity, gradient map is a diffeomorphism, so index is = 1.

1.2. Definition 3. Number of critical points of a small Morsification. Let \tilde{f} be a very small perturbation of f, so that any function of the segment $[f, \tilde{f}]$ (i.e. of form $tf + (1 - t)\tilde{f}, t \in [0, 1]$) does not have critical points at S_{ε}^{2n-1} . In particular, the gradient map of \tilde{f} on S_{ε}^{2n-1} is homotopic to that of f. Milnor number is the number of (Morse) critical points of \tilde{f} inside B_{ε} .

Example: Morse singularity f is already is a Morsification with a single critical point.

Equivalence of these two definitions: standard theorem on index of a vector field.

1.3. Definition 4. Homology group of Milnor fiber.

Lemma 1. Variety $f^{-1}(0)$ is transversal to S_{ε}^{2n-1} for any sufficiently small $\varepsilon > 0$.

Proof. Suppose the converse: for any sufficiently small ε there is a point $a(\varepsilon) \in S_{\varepsilon}^{2n-1}$ such that f(a) = 0 and $f^{-1}(0)$ is tangent to S_{ε}^{2n-1} at it. Then use

Lemma 2 (on selection of curves). If a real semi-algebraic set $A \subset \mathbb{R}^N \setminus 0$ approaches the point 0 then there is a germ of analytic non-constant curve $\varphi : [0, \tau) \rightarrow$ V.A. VASSILIEV

 $(\mathbb{R}^N, 0) \text{ such that } \varphi(t) \in A \text{ for any } t \in (0, \tau).$

Apply this lemma to the set of points at which $f^{-1}(0)$ is tangent to corresponding spheres $S_{\varepsilon'}^{2n-1}$. Then f cannot be constant along this curve.

Let us fix ε such that $f^{-1}(0)$ is transversal to $S_{\varepsilon'}^{2n-1}$ for all $\varepsilon' \in (0, \varepsilon]$.

Then for any $\zeta \in \mathbb{C}^1$ very close to 0, the variety $f^{-1}(\zeta)$ is also transversal to S_{ε}^{2n-1} (but generally not for all $\varepsilon' < \varepsilon$). (I. e., there is $\delta > 0$ such that it is true for any ζ from the δ -disc $D_{\delta} \subset \mathbb{C}^1$ centered at 0).

Theorem 1 (Milnor). Manifold $V_{\zeta} = f^{-1}(\zeta) \cap B_{\varepsilon}, \quad \zeta \in D_{\delta} \setminus \{0\}, \text{ is ho-}$ motopy equivalent to the wedge of finitely
many spheres of dimension n - 1. In particular, $\tilde{H}_{n-1}(V_{\zeta}) \simeq \mathbb{Z}^{\mu}$ for certain integer μ , and $\tilde{H}_j(V_{\zeta}) = 0$ for $j \neq n-1$.

This number μ is again equal to Milnor number of f.

Example: series A_{μ} in one variable. $f^{-1}(0) \cap B_{\varepsilon}$ consists of $\mu + 1$ points, so $\tilde{H}_{n-1} = \mathbb{Z}^{\mu}$.

1.4. Example of Morse singularity. Milnor fiber $f^{-1}(\zeta)$ of Morse singularity $f = z_1^2 + \cdots + z_n^2$, let be $\zeta = \delta > 0$. $f^{-1}(\delta) \cap \mathbb{R}^n$ is the sphere S^{n-1} of radius $\sqrt{\delta}$ in \mathbb{R}^n . By dilation we can assume $\delta =$ 1. Consider projection of $f^{-1}(1)$ to \mathbb{R}^n . Pre-image of $0 \in \mathbb{R}^n$ is empty: indeed, f is negative on the imaginary plane $i\mathbb{R}^n$. The composition of this projection with polar projection $\mathbb{R}^n \setminus \{0\} \to S^{n-1}$ is a fiber bundle (since our function is invariant under rotations of \mathbb{R}^n). Its fiber over the point $(1, 0, \ldots, 0) \in S^{n-1}$ consists of points V.A. VASSILIEV

 $(z_1, \ldots, z_n), z_k = x_k + iy_k$, such that $x_1 > 0, x_2 = \cdots = x_n = 0, (x_1 + iy_1)^2 - y_2^2 - \cdots - y_n^2 = 1$, in particular $y_1 = 0$. This is a (n-1)-dimensional manifold, its projection to $i\mathbb{R}^n$ along \mathbb{R}^n is a diffeomorphism onto the hyperplane $\{y_1 = 0\} \subset i\mathbb{R}^n$. So entire $f^{-1}(1)$ is homotopy equivalent to S^{n-1} (and diffeomorphic to TS^{n-1} by multiplication of fibers by i).

Remembering on the small ball B_{ε} and correspondingly small δ , $f^{-1}(\delta) \cap B_{\varepsilon}$ is diffeomorphic to $T_1 S^{n-1}$, the space of tangent vectors of length ≤ 1 of S^{n-1} .

The generator of $H_{n-1}(f^{-1}(\delta))$ defined by our small sphere is called the *vanishing cycle*.

1.5. **Proof of equivalence** $3 \Leftrightarrow 4$. Let ε be as in Lemma 1 above.

1. Let again \tilde{f} be a strict Morsification of f very close to f, then all varieties $\tilde{f}^{-1}(\eta)$ are transversal to S_{ε}^{2n-1} ; if η is not equal to either of critical values of \tilde{f} then the variety $\tilde{f}^{-1}(\eta) \cap B_{\varepsilon}$ is non-singular and isotopic to $f^{-1}(\zeta) \cap B_{\varepsilon}, \zeta \in D_{\delta} \setminus \{0\}.$

2. The singular fiber $V_0 \equiv f^{-1}(0) \cap B_{\varepsilon}$ is contractible. In general, if Y is an algebraic subset in \mathbb{R}^N or \mathbb{C}^N , and $a \in A$, then for any sufficiently small ball B centered at a, the pair $(Y \cap B, Y \cap \partial B)$ is homeomorphic to the cone over $Y \cap \partial B$.

3. If δ is small enough comparing with the size of $B\varepsilon$, and D_{δ} is the disc or radius δ centered at 0 in \mathbb{C}^1 , then $f^{-1}(D_{\delta}) \cap B_{\varepsilon}$ can be contracted to V_0 (i.e. contains it as a deformation retract), in particular also is contractible. 4. If the perturbation \tilde{f} of f is very small (compared with ε and δ), then the perturbed preimage $\tilde{V} = \tilde{f}^{-1}(D_{\delta}) \cap B_{\varepsilon}$ is homeomorphic to $f^{-1}(D_{\delta}) \cap B_{\varepsilon}$, in particular also is contractible. So, by exact sequence of the pair we need to prove that $H_n(\tilde{f}^{-1}(D_{\delta}) \cap B_{\varepsilon}, \tilde{f}^{-1}(\zeta) \cap B_{\varepsilon}) \sim \mathbb{Z}^{\mu}$ where μ is the number of critical points of \tilde{f} in B_{ε} . (And we have proved it for Morse singularities.)

8

5. For any of μ Morse critical points of f, (call it a_j , with critical value ξ_j) consider a small ball $B_j \subset B_{\varepsilon}$ around it, in which the corresponding fiber $\tilde{f}^{-1}(\xi_j)$ behaves as in the Morse example (i.e. is transversal to ∂B_j and to all smaller balls); let $D_j \subset D_{\delta}$ be a small disc around ξ_j for which entire previous picture holds (i.e. all fibers $\tilde{f}^{-1}(\xi), \xi \in D_j$, also are transversal to ∂B_j). Then by the Morse example we have $\tilde{H}_{n-1}(\tilde{f}^{-1}(\zeta) \cap B_j) \simeq \mathbb{Z}$ for any $z \in D_j \setminus$ ξ_j . Also we can suppose that all discs D_j do not meet one another.

V.A. VASSILIEV

Let us connect the non-critical value ζ of \tilde{f} by paths with all μ discs D_j . Denote by \bigstar the union of these paths and discs D_j , and by \circledast only the union of paths, without the discs. Fibers $\tilde{f}^{-1}(\xi) \cap B_{\varepsilon}$ form a fiber bundle over $D_{\delta} \setminus \{\mu \text{ critical values of } \tilde{f} \}$, therefore the variety $\tilde{f}^{-1}(D_{\delta}) \cap B_{\varepsilon}$ can be contracted onto $\tilde{f}^{-1}(\bigstar) \cap B_{\varepsilon}$, in particular the latter variety also is contractible. By the same reason, the variety $\tilde{f}^{-1}(\bigstar) \cap B_{\varepsilon}$. So, it remains to prove that

 $H_n(\tilde{f}^{-1}(\mathbf{A}) \cap B_{\varepsilon}, \tilde{f}^{-1}(\mathbf{A}) \cap B_{\varepsilon}) \simeq \mathbb{Z}^{\mu}$

where μ is the number of critical points a_j . 6. This can be proved by induction, with the Morse case as induction step. Namely, for any $k = 0, 1, \ldots, \mu$ denote by \bigstar_k the set \bigstar with first k discs D_j removed, in particular $\bigstar = \bigstar_0$ and $\divideontimes = \bigstar_{\mu}$.

10

Lemma 3. For any $k = 1, \ldots, \mu$, the group

 $\tilde{H}_{i}(\tilde{f}^{-1}(\mathbf{A}_{k-1}) \cap B_{\varepsilon}, \tilde{f}^{-1}(\mathbf{A}_{k}) \cap B_{\varepsilon})$ is isomorphic to \mathbb{Z} if i = n and is trivial for $i \neq n$.

Then by exact sequence of this pair we get that the group $\tilde{H}_i(\tilde{f}^{-1}(\mathbf{X}_k) \cap B_{\varepsilon})$ is isomorphic to \mathbb{Z}^k if i = n - 1 and is trivial for all other i.

Proof of Lemma. By excision this group is equal to $\tilde{H}_i(\tilde{f}^{-1}(D_j) \cap B_{\varepsilon}, \tilde{f}^{-1}(\eta_j) \cap B_{\varepsilon})$, where η_j is the common point of D_j and *. It is easy to see that the set $\tilde{f}^{-1}(D_j) \cap B_{\varepsilon}$ can be contracted onto $(\tilde{f}^{-1}(D_j) \cap B_j) \cup \tilde{f}^{-1}(\eta_j)$, and hence, again by excision, the group

$$\tilde{H}_i(\tilde{f}^{-1}(D_j) \cap B_{\varepsilon}, \tilde{f}^{-1}(\eta_j) \cap B_{\varepsilon})$$

is isomorphic to

 $\tilde{H}_i(\tilde{f}^{-1}(D_j) \cap B_j, \tilde{f}^{-1}(\eta_j) \cap B_j),$ which we know from the Morse case.

1.6. Basis of vanishing cycles defined by a system of paths. For any j, we get a vanishing cycle: a small sphere generating the group $\tilde{H}_{n-1}(\tilde{f}^{-1}(\eta_j) \cap B_j)$. Consider the corresponding element of group

 $\tilde{H}_{n-1}(\tilde{f}^{-1}(\eta_j) \cap B_{\varepsilon}).$

Using the covering homotopy of the Milnor fibration over $D_{\delta} \setminus \{\text{critical values}\}\ \text{move}\$ all these cycles to elements of

 $H_{n-1}(\tilde{f}^{-1}(\zeta) \cap B_{\varepsilon})$

along our μ paths of *. Obtained μ elements Δ_j freely generate the latter group. They depend on the choice of paths (and of the orientations of small spheres).

12