
CRITICAL POINTS, 15.02

V.A. VASSILIEV

1. Other definitions of Milnor
number of isolated singularity

1.1. Definition 2. Index of gradient
map. f : (Cn, 0) → (C, 0) analytic, has
isolated singularity at 0. Let Bε be a ball
in Cn centered at 0, containing no other
critical points. The gradient vector field

n∑
i=1

∂f

∂xi

∂

∂xi

(normed) defines a continuous map S2n−1
ε →

S2n−1
1 . The index of this map is equal to

Milnor number.
Example: for Morse singularity, gradient
map is a diffeomorphism, so index is = 1.

1
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1.2. Definition 3. Number of criti-
cal points of a small Morsification.
Let f̃ be a very small perturbation of f ,
so that any function of the segment [f, f̃ ]
(i.e. of form tf + (1− t)f̃ , t ∈ [0, 1]) does
not have critical points at S2n−1

ε . In par-
ticular, the gradient map of f̃ on S2n−1

ε is
homotopic to that of f . Milnor number is
the number of (Morse) critical points of f̃
inside Bε.
Example: Morse singularity f is already is
a Morsification with a single critical point.
Equivalence of these two definitions: stan-
dard theorem on index of a vector field.

1.3. Definition 4. Homology group
of Milnor fiber.

Lemma 1.Variety f−1(0) is transversal
to S2n−1

ε for any sufficiently small ε > 0.



CRITICAL POINTS, 15.02 3

s Bε

Vζ

V0

Proof. Suppose the converse: for any suf-
ficiently small ε there is a point a(ε) ∈
S2n−1
ε such that f (a) = 0 and f−1(0) is

tangent to S2n−1
ε at it. Then use

Lemma 2 (on selection of curves). If a
real semi-algebraic set A ⊂ RN \ 0 ap-
proaches the point 0 then there is a germ
of analytic non-constant curve φ : [0, τ ) →
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(RN , 0) such that φ(t) ∈ A for any t ∈
(0, τ ). □

Apply this lemma to the set of points at
which f−1(0) is tangent to corresponding
spheres S2n−1

ε′ . Then f cannot be constant
along this curve. □

Let us fix ε such that f−1(0) is transversal
to S2n−1

ε′ for all ε′ ∈ (0, ε].

Then for any ζ ∈ C1 very close to 0, the
variety f−1(ζ) is also transversal to S2n−1

ε
(but generally not for all ε′ < ε). (I. e.,
there is δ > 0 such that it is true for any ζ
from the δ-disc Dδ ⊂ C1 centered at 0).

Theorem 1 (Milnor).Manifold
Vζ = f−1(ζ) ∩ Bε, ζ ∈ Dδ \ {0}, is ho-
motopy equivalent to the wedge of finitely
many spheres of dimension n− 1.
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In particular, H̃n−1(Vζ) ≃ Zµ for certain

integer µ, and H̃j(Vζ) = 0 for j ̸= n− 1.
This number µ is again equal to Milnor
number of f .
Example: seriesAµ in one variable. f

−1(0)∩
Bε consists of µ+1 points, so H̃n−1 = Zµ.

1.4. Example of Morse singularity.
Milnor fiber f−1(ζ) of Morse singularity
f = z21 + · · · + z2n, let be ζ = δ > 0.

f−1(δ) ∩ Rn is the sphere Sn−1 of radius√
δ in Rn. By dilation we can assume δ =

1. Consider projection of f−1(1) to Rn.
Pre-image of 0 ∈ Rn is empty: indeed, f is
negative on the imaginary plane iRn. The
composition of this projection with polar
projection Rn\{0} → Sn−1 is a fiber bun-
dle (since our function is invariant under
rotations of Rn). Its fiber over the point
(1, 0, . . . , 0) ∈ Sn−1 consists of points
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(z1, . . . , zn), zk = xk+ iyk, such that x1 >
0, x2 = · · · = xn = 0, (x1 + iy1)

2 − y22 −
· · ·−y2n = 1, in particular y1 = 0. This is a
(n−1)-dimensional manifold, its projection
to iRn along Rn is a diffeomorphism onto
the hyperplane {y1 = 0} ⊂ iRn. So en-
tire f−1(1) is homotopy equivalent to Sn−1

(and diffeomorphic to TSn−1 by multipli-
cation of fibers by i).
Remembering on the small ball Bε and
correspondingly small δ, f−1(δ)∩Bε is dif-
feomorphic to T1S

n−1, the space of tangent
vectors of length ≤ 1 of Sn−1.
The generator of Hn−1(f

−1(δ)) defined
by our small sphere is called the vanishing
cycle.

1.5. Proof of equivalence 3 ⇔ 4. Let
ε be as in Lemma 1 above.
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1. Let again f̃ be a strict Morsification of
f very close to f , then all varieties f̃−1(η)
are transversal to S2n−1

ε ; if η is not equal to
either of critical values of f̃ then the variety
f̃−1(η)∩Bε is non-singular and isotopic to
f−1(ζ) ∩Bε, ζ ∈ Dδ \ {0}.
2. The singular fiber V0 ≡ f−1(0)∩Bε is
contractible. In general, if Y is an algebraic
subset in RN or CN , and a ∈ A, then for
any sufficiently small ball B centered at a,
the pair (Y ∩B, Y ∩∂B) is homeomorphic
to the cone over Y ∩ ∂B.
3. If δ is small enough comparing with
the size of Bε, and Dδ is the disc or radius
δ centered at 0 in C1, then f−1(Dδ) ∩ Bε

can be contracted to V0 (i.e. contains it as
a deformation retract), in particular also is
contractible.
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4. If the perturbation f̃ of f is very small
(compared with ε and δ), then the per-
turbed preimage Ṽ = f̃−1(Dδ) ∩ Bε is
homeomorphic to f−1(Dδ) ∩ Bε, in par-
ticular also is contractible. So, by exact se-
quence of the pair we need to prove that
Hn(f̃

−1(Dδ) ∩ Bε, f̃
−1(ζ) ∩ Bε) ∼ Zµ

where µ is the number of critical points of
f̃ in Bε. (And we have proved it for Morse
singularities.)

r
β

Bε
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5. For any of µ Morse critical points of f̃ ,
(call it aj, with critical value ξj) consider
a small ball Bj ⊂ Bε around it, in which

the corresponding fiber f̃−1(ξj) behaves as
in the Morse example (i.e. is transversal to
∂Bj and to all smaller balls); let Dj ⊂ Dδ
be a small disc around ξj for which en-
tire previous picture holds (i.e. all fibers
f̃−1(ξ), ξ ∈ Dj, also are transversal to
∂Bj). Then by the Morse example we have

H̃n−1(f̃
−1(ζ)∩Bj) ≃ Z for any z ∈ Dj \

ξj. Also we can suppose that all discs Dj
do not meet one another.
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Let us connect the non-critical value ζ of
f̃ by paths with all µ discs Dj. Denote by
✠ the union of these paths and discs Dj,
and by ⋇ only the union of paths, without
the discs. Fibers f̃−1(ξ) ∩ Bε form a fiber
bundle over Dδ \ {µ critical values of f̃},
therefore the variety f̃−1(Dδ) ∩Bε can be
contracted onto f̃−1(✠)∩Bε, in particular
the latter variety also is contractible. By
the same reason, the variety f̃−1(⋇) ∩ Bε

can be contracted onto f̃−1(ζ)∩Bε. So, it
remains to prove that

Hn(f̃
−1(✠) ∩Bε, f̃

−1(⋇) ∩Bε) ≃ Zµ

where µ is the number of critical points aj.
6. This can be proved by induction, with
the Morse case as induction step. Namely,
for any k = 0, 1, . . . , µ denote by ✠k the
set✠ with first k discs Dj removed, in par-
ticular ✠ = ✠0 and ⋇ = ✠µ.
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Lemma 3. For any k = 1, . . . , µ, the
group

H̃i(f̃
−1(✠k−1) ∩Bε, f̃

−1(✠k) ∩Bε)

is isomorphic to Z if i = n and is trivial
for i ̸= n.

Then by exact sequence of this pair we
get that the group H̃i(f̃

−1(✠k) ∩ Bε) is
isomorphic to Zk if i = n− 1 and is trivial
for all other i.

Proof of Lemma. By excision this group is
equal to H̃i(f̃

−1(Dj)∩Bε, f̃
−1(ηj)∩Bε),

where ηj is the common point ofDj and ⋇.

It is easy to see that the set f̃−1(Dj)∩Bε

can be contracted onto (f̃−1(Dj) ∩ Bj) ∪
f̃−1(ηj), and hence, again by excision, the
group

H̃i(f̃
−1(Dj) ∩Bε, f̃

−1(ηj) ∩Bε)
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is isomorphic to

H̃i(f̃
−1(Dj) ∩Bj, f̃

−1(ηj) ∩Bj),

which we know from the Morse case.

1.6. Basis of vanishing cycles defined
by a system of paths. For any j, we get
a vanishing cycle: a small sphere generating
the group H̃n−1(f̃

−1(ηj) ∩ Bj). Consider
the corresponding element of group

H̃n−1(f̃
−1(ηj) ∩Bε).

Using the covering homotopy of the Milnor
fibration over Dδ \ {critical values} move
all these cycles to elements of

Hn−1(f̃
−1(ζ) ∩Bε)

along our µ paths of ⋇. Obtained µ ele-
ments ∆j freely generate the latter group.
They depend on the choice of paths (and of
the orientations of small spheres).


