1. Other definitions of Milnor

NUMBER OF ISOLATED SINGULARITY 1.1. Definition 2. Index of gradient map. $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ analytic, has isolated singularity at 0 . Let B_{ε} be a ball in \mathbb{C}^{n} centered at 0 , containing no other critical points. The gradient vector field

$$
\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial}{\partial x_{i}}
$$

(normed) defines a continuous map $S_{\varepsilon}^{2 n-1} \rightarrow$ $S_{1}^{2 n-1}$. The index of this map is equal to Milnor number.
Example: for Morse singularity, gradient map is a diffeomorphism, so index is $=1$.
1.2. Definition 3. Number of critical points of a small Morsification. Let \tilde{f} be a very small perturbation of f, so that any function of the segment $[f, \tilde{f}]$ (i.e. of form $t f+(1-t) \tilde{f}, t \in[0,1])$ does not have critical points at $S_{\varepsilon_{0}}^{2 n-1}$. In particular, the gradient map of \tilde{f} on $S_{\varepsilon}^{2 n-1}$ is homotopic to that of f. Milnor number is the number of (Morse) critical points of \tilde{f} inside B_{ε}.
Example: Morse singularity f is already is a Morsification with a single critical point.
Equivalence of these two definitions: standard theorem on index of a vector field.

1.3. Definition 4. Homology group of Milnor fiber.

Lemma 1. Variety $f^{-1}(0)$ is transversal to $S_{\varepsilon}^{2 n-1}$ for any sufficiently small $\varepsilon>0$.

Proof. Suppose the converse: for any sufficiently small ε there is a point $a(\varepsilon) \in$ $S_{\varepsilon}^{2 n-1}$ such that $f(a)=0$ and $f^{-1}(0)$ is tangent to $S_{\varepsilon}^{2 n-1}$ at it. Then use

Lemma 2 (on selection of curves). If a real semi-algebraic set $A \subset \mathbb{R}^{N} \backslash 0$ approaches the point 0 then there is a germ of analytic non-constant curve $\varphi:[0, \tau) \rightarrow$
$\left(\mathbb{R}^{N}, 0\right)$ such that $\varphi(t) \in A$ for any $t \in$ $(0, \tau)$.

Apply this lemma to the set of points at which $f^{-1}(0)$ is tangent to corresponding spheres $S_{\varepsilon^{\prime}}^{2 n-1}$. Then f cannot be constant along this curve.

Let us fix ε such that $f^{-1}(0)$ is transversal to $S_{\varepsilon^{\prime}}^{2 n-1}$ for all $\varepsilon^{\prime} \in(0, \varepsilon]$.
Then for any $\zeta \in \mathbb{C}^{1}$ very close to 0 , the variety $f^{-1}(\zeta)$ is also transversal to $S_{\varepsilon}^{2 n-1}$ (but generally not for all $\varepsilon^{\prime}<\varepsilon$). (I. e., there is $\delta>0$ such that it is true for any ζ from the δ-disc $D_{\delta} \subset \mathbb{C}^{1}$ centered at 0).

Theorem 1 (Milnor). Manifold $V_{\zeta}=f^{-1}(\zeta) \cap B_{\varepsilon}, \quad \zeta \in D_{\delta} \backslash\{0\}$, is homotopy equivalent to the wedge of finitely many spheres of dimension $n-1$.

In particular, $\tilde{H}_{n-1}\left(V_{\zeta}\right) \simeq \mathbb{Z}^{\mu}$ for certain integer μ, and $\tilde{H}_{j}\left(V_{\zeta}\right)=0$ for $j \neq n-1$. This number μ is again equal to Milnor number of f.
Example: series A_{μ} in one variable. $f^{-1}(0) \cap$
B_{ε} consists of $\mu+1$ points, so $\tilde{H}_{n-1}=\mathbb{Z}^{\mu}$.
1.4. Example of Morse singularity. Milnor fiber $f^{-1}(\zeta)$ of Morse singularity $f=z_{1}^{2}+\cdots+z_{n}^{2}$, let be $\zeta=\delta>0$. $f^{-1}(\delta) \cap \mathbb{R}^{n}$ is the sphere S^{n-1} of radius $\sqrt{\delta}$ in \mathbb{R}^{n}. By dilation we can assume $\delta=$ 1. Consider projection of $f^{-1}(1)$ to \mathbb{R}^{n}. Pre-image of $0 \in \mathbb{R}^{n}$ is empty: indeed, f is negative on the imaginary plane $i \mathbb{R}^{n}$. The composition of this projection with polar projection $\mathbb{R}^{n} \backslash\{0\} \rightarrow S^{n-1}$ is a fiber bundle (since our function is invariant under rotations of \mathbb{R}^{n}). Its fiber over the point $(1,0, \ldots, 0) \in S^{n-1}$ consists of points
$\left(z_{1}, \ldots, z_{n}\right), z_{k}=x_{k}+i y_{k}$, such that $x_{1}>$ $0, x_{2}=\cdots=x_{n}=0,\left(x_{1}+i y_{1}\right)^{2}-y_{2}^{2}-$ $\cdots-y_{n}^{2}=1$, in particular $y_{1}=0$. This is a ($n-1$)-dimensional manifold, its projection to $i \mathbb{R}^{n}$ along \mathbb{R}^{n} is a diffeomorphism onto the hyperplane $\left\{y_{1}=0\right\} \subset i \mathbb{R}^{n}$. So entire $f^{-1}(1)$ is homotopy equivalent to S^{n-1} (and diffeomorphic to $T S^{n-1}$ by multiplication of fibers by i).
Remembering on the small ball B_{ε} and correspondingly small $\delta, f^{-1}(\delta) \cap B_{\varepsilon}$ is diffeomorphic to $T_{1} S^{n-1}$, the space of tangent vectors of length ≤ 1 of S^{n-1}.
The generator of $H_{n-1}\left(f^{-1}(\delta)\right)$ defined by our small sphere is called the vanishing cycle.
1.5. Proof of equivalence $3 \Leftrightarrow 4$. Let ε be as in Lemma 1 above.

1. Let again \tilde{f} be a strict Morsification of f very close to f, then all varieties $\tilde{f}^{-1}(\eta)$ are transversal to $S_{\varepsilon}^{2 n-1}$; if η is not equal to either of critical values of \tilde{f} then the variety $\tilde{f}^{-1}(\eta) \cap B_{\varepsilon}$ is non-singular and isotopic to $f^{-1}(\zeta) \cap B_{\varepsilon}, \zeta \in D_{\delta} \backslash\{0\}$.
2. The singular fiber $V_{0} \equiv f^{-1}(0) \cap B_{\varepsilon}$ is contractible. In general, if Y is an algebraic subset in \mathbb{R}^{N} or \mathbb{C}^{N}, and $a \in A$, then for any sufficiently small ball B centered at a, the pair $(Y \cap B, Y \cap \partial B)$ is homeomorphic to the cone over $Y \cap \partial B$.
3. If δ is small enough comparing with the size of $B \varepsilon$, and D_{δ} is the disc or radius δ centered at 0 in \mathbb{C}^{1}, then $f^{-1}\left(D_{\delta}\right) \cap B_{\varepsilon}$ can be contracted to V_{0} (i.e. contains it as a deformation retract), in particular also is contractible.
4. If the perturbation \tilde{f} of f is very small (compared with ε and δ), then the perturbed preimage $\tilde{V}=\tilde{f}^{-1}\left(D_{\delta}\right) \cap B_{\varepsilon}$ is homeomorphic to $f^{-1}\left(D_{\delta}\right) \cap B_{\varepsilon}$, in particular also is contractible. So, by exact sequence of the pair we need to prove that $H_{n}\left(\tilde{f}^{-1}\left(D_{\delta}\right) \cap B_{\varepsilon}, \tilde{f}^{-1}(\zeta) \cap B_{\varepsilon}\right) \sim \mathbb{Z}^{\mu}$ where μ is the number of critical points of \tilde{f} in B_{ε}. (And we have proved it for Morse singularities.)

5. For any of μ Morse critical points of \tilde{f}, (call it a_{j}, with critical value ξ_{j}) consider a small ball $B_{j} \subset B_{\varepsilon}$ around it, in which the corresponding fiber $\tilde{f}^{-1}\left(\xi_{j}\right)$ behaves as in the Morse example (i.e. is transversal to ∂B_{j} and to all smaller balls); let $D_{j} \subset D_{\delta}$ be a small disc around ξ_{j} for which entire previous picture holds (i.e. all fibers $\tilde{f}^{-1}(\xi), \xi \in D_{j}$, also are transversal to $\left.\partial B_{j}\right)$. Then by the Morse example we have $\tilde{H}_{n-1}\left(\tilde{f}^{-1}(\zeta) \cap B_{j}\right) \simeq \mathbb{Z}$ for any $z \in D_{j} \backslash$ ξ_{j}. Also we can suppose that all discs D_{j} do not meet one another.

Let us connect the non-critical value ζ of \tilde{f} by paths with all $\mu \operatorname{discs} D_{j}$. Denote by 4 the union of these paths and discs D_{j}, and by $\%$ only the union of paths, without the discs. Fibers $\tilde{f}^{-1}(\xi) \cap B_{\varepsilon}$ form a fiber bundle over $D_{\delta} \backslash\{\mu$ critical values of $\tilde{f}\}$, therefore the variety $\tilde{f}^{-1}\left(D_{\delta}\right) \cap B_{\varepsilon}$ can be contracted onto $\tilde{f}^{-1}(\mathbf{X}) \cap B_{\varepsilon}$, in particular the latter variety also is contractible. By the same reason, the variety $\tilde{f}^{-1}(*) \cap B_{\varepsilon}$ can be contracted onto $\tilde{f}^{-1}(\zeta) \cap B_{\varepsilon}$. So, it remains to prove that

$$
H_{n}\left(\tilde{f}^{-1}(\mathbf{\Sigma}) \cap B_{\varepsilon}, \tilde{f}^{-1}(*) \cap B_{\varepsilon}\right) \simeq \mathbb{Z}^{\mu}
$$

where μ is the number of critical points a_{j}.
6. This can be proved by induction, with the Morse case as induction step. Namely, for any $k=0,1, \ldots, \mu$ denote by \mathbf{w}_{k} the set with first k discs D_{j} removed, in particular $\mathbf{y}=\mathbf{w}_{0}$ and $\#=\mathbf{E}_{\mu}$.

Lemma 3. For any $k=1, \ldots, \mu$, the group

$$
\tilde{H}_{i}\left(\tilde{f}^{-1}\left(\mathbf{\Sigma}_{k-1}\right) \cap B_{\varepsilon}, \tilde{f}^{-1}\left(\mathbf{\Sigma}_{k}\right) \cap B_{\varepsilon}\right)
$$

is isomorphic to \mathbb{Z} if $i=n$ and is trivial for $i \neq n$.

Then by exact sequence of this pair we get that the group $\tilde{H}_{i}\left(\tilde{f}^{-1}\left(\mathbf{\Sigma}_{k}\right) \cap B_{\varepsilon}\right)$ is isomorphic to \mathbb{Z}^{k} if $i=n-1$ and is trivial for all other i.

Proof of Lemma. By excision this group is equal to $\tilde{H}_{i}\left(\tilde{f}^{-1}\left(D_{j}\right) \cap B_{\varepsilon}, \tilde{f}^{-1}\left(\eta_{j}\right) \cap B_{\varepsilon}\right)$, where η_{j} is the common point of D_{j} and $*$. It is easy to see that the set $\tilde{f}^{-1}\left(D_{j}\right) \cap B_{\varepsilon}$ can be contracted onto $\left(\tilde{f}^{-1}\left(D_{j}\right) \cap B_{j}\right) \cup$ $\tilde{f}^{-1}\left(\eta_{j}\right)$, and hence, again by excision, the group

$$
\tilde{H}_{i}\left(\tilde{f}^{-1}\left(D_{j}\right) \cap B_{\varepsilon}, \tilde{f}^{-1}\left(\eta_{j}\right) \cap B_{\varepsilon}\right)
$$

is isomorphic to

$$
\tilde{H}_{i}\left(\tilde{f}^{-1}\left(D_{j}\right) \cap B_{j}, \tilde{f}^{-1}\left(\eta_{j}\right) \cap B_{j}\right)
$$

which we know from the Morse case.
1.6. Basis of vanishing cycles defined by a system of paths. For any j, we get a vanishing cycle: a small sphere generating the group $\tilde{H}_{n-1}\left(\tilde{f}^{-1}\left(\eta_{j}\right) \cap B_{j}\right)$. Consider the corresponding element of group

$$
\tilde{H}_{n-1}\left(\tilde{f}^{-1}\left(\eta_{j}\right) \cap B_{\varepsilon}\right)
$$

Using the covering homotopy of the Milnor fibration over $D_{\delta} \backslash\{$ critical values\} move all these cycles to elements of

$$
H_{n-1}\left(\tilde{f}^{-1}(\zeta) \cap B_{\varepsilon}\right)
$$

along our μ paths of $\%$. Obtained μ elements Δ_{j} freely generate the latter group. They depend on the choice of paths (and of the orientations of small spheres).

