CRITICAL POINTS, 15.02

V.A. VASSILIEV

1. OTHER DEFINITIONS OF MILNOR
NUMBER OF ISOLATED SINGULARITY

1.1. Definition 2. Index of gradient
map. f : (C" 0) — (C,0) analytic, has
isolated singularity at 0. Let Bz be a ball

in C" centered at 0, containing no other
critical points. The gradient vector field

" Of 9

1=1
(normed) defines a continuous map Sgn_l N
S%n_l. The index of this map is equal to
Milnor number.

Example: for Morse singularity, gradient
map is a diffeomorphism, so index is = 1.



1.2. Definition 3. Number of criti-
cal points of a small Morsification.
Let f be a very small perturbation of f,
so that any function of the segment [f, f]
(i.e. of form tf + (1 —t)f, t € [0,1]) does
not have critical points at Sg”_l. In par-
ticular, the gradient map of f on Sgn_l IS
homotopic to that of f. Milnor number is
the number of (Morse) critical points of f
inside B..

Example: Morse singularity f is already is
a Morsification with a single critical point.

Equivalence of these two definitions: stan-

dard theorem on index of a vector field.

1.3. Definition 4. Homology group
of Milnor fiber.

Lemma 1. Variety f~1(0) is transversal
to 53”—1 for any sufficiently small e > 0.
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Proof. Suppose the converse: for any suf-
ficiently small £ there is a point a(e) €
S2"=1 quch that f(a) = 0 and f~1(0) is
tangent to S2" 1 at it. Then use

Lemma 2 (on selection of curves). If a
real semi-algebraic set A C RY \ 0 ap-
proaches the point 0 then there is a germ
of analytic non-constant curve @ : [0, 7) —
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(RY,0) such that p(t) € A for any t €
(0, 7). ]

Apply this lemma to the set of points at
which f71(0) is tangent to corresponding
spheres Sg,”_l. Then f cannot be constant
along this curve. []

Let us fix € such that f~1(0) is transversal
to Sg,”_l for all £’ € (0, €].

Then for any ¢ € C! very close to 0, the
variety f~1(() is also transversal to S2* 1
(but generally not for all &’ < ). (I e,
there is 0 > 0 such that it is true for any ¢
from the d-disc Ds C C! centered at 0).

Theorem 1 (Milnor). Manifold

Ve=f"H¢O)NB:, ¢ Ds\{0}, is ho-
motopy equivalent to the wedge of finitely
many spheres of dimension n — 1.



[n particular, F[n_l(vc) ~ 7H for certain
integer p, and I:IJ(VC> =0for j #n— 1.

This number p is again equal to Milnor
number of f.

Example: series A, in one variable. f —“Lo)n
B: consists of p+ 1 points, so H,,_1 = ZH.

1.4. Example of Morse singularity.
Milnor fiber f=1(¢) of Morse singularity
f = z%+---+z%, let be ( = o0 > 0.
£71(6) NR™ is the sphere S"~ 1 of radius
V6 in R”. By dilation we can assume § =
1. Consider projection of f=1(1) to R™.
Pre-image of 0 € R" is empty: indeed, f is
negative on the imaginary plane ‘IR". The
composition of this projection with polar
projection R\ {0} — S™ 1 is a fiber bun-
dle (since our function is invariant under
rotations of R™). TIts fiber over the point
(1,0,...,0) € S"! consists of points



(21,--+,2n), 2. = T +1Yg, such that xq >
0, 29 = -+ =ap =0, (x1 +iy1)* — y5 —
x -—y% = 1, in particular y; = 0. Thisis a
(n—1)-dimensional manifold, its projection
to ¢R"™ along R" is a diffeomorphism onto
the hyperplane {y; = 0} C i{R". So en-
tire £ ~1(1) is homotopy equivalent to S™~1
(and diffeomorphic to T°.S"~! by multipli-
cation of fibers by 7).

Remembering on the small ball B: and
correspondingly small 6, f~(8) N B is dif-
feomorphic to T1.9™ 1 the space of tangent
vectors of length < 1 of S71,

The generator of H,,_i(f~1(8)) defined
by our small sphere is called the vanishing
cycle.

1.5. Proof of equivalence 3 < 4. Let
e be as in Lemma 1 above.
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1. Let again f be a strict Morsification of
f very close to f, then all varieties f~!(n)
are transversal to Sgn_l; if 1 is not equal to
either of critical values of f then the variety
£~1(n) N Be is non-singular and isotopic to
f~H¢) N B:, ¢ € Dy \ {0}.

2. The singular fiber Vj = f~1(0) N B is
contractible. In general, if Y is an algebraic
subset in RY or CV, and a € A, then for
any sufficiently small ball B centered at a,
the pair (Y N B,Y NAB) is homeomorphic
to the cone over Y N 9B.

3. If ¢ is small enough comparing with
the size of Be, and Dy is the disc or radius
§ centered at 0 in C!, then f~1(Dj) N B-
can be contracted to V| (i.e. contains it as
a deformation retract), in particular also is
contractible.
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4. Tf the perturbation f of f is very small
(compared with ¢ and ), then the per-
turbed preimage V' = f~1(Ds) N B: is
homeomorphic to f~1(Ds) N Be, in par-
ticular also is contractible. So, by exact se-
quence of the pair we need to prove that
Hy(f~Y(Ds) N Be, f7H¢) N Be) ~ 7V
where p is the number of critical points of
f in Be. (And we have proved it for Morse

singularities. )
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5. For any of 1 Morse critical points of f,
(call it aj;, with critical value &;) consider
a small ball B; C Bg around it, in which

the correspondmg fiber f— (fj) behaves as
in the Morse example (i.e. is transversal to
OB; and to all smaller balls); let D; C D
be a small disc around &; for which en-
tire previous picture holds (i.e. all fibers
FHE), € € Dj, also are transversal to
0B;). Then by the Morse example we have
[:[n (f~ (C)ﬂB) Z for any z € D; \
§;. Also we can suppose that all discs D;
do not meet one another.



Let us connect the non-critical value ¢ of
f by paths with all u discs D;. Denote by
I the union of these paths and discs Dy,
and by % only the umon of paths, without
the discs. Fibers f~1(€) N B. form a fiber
bundle over Ds \ {u Crltlcal values of f}.
therefore the varlety f~H(Dgs) N B: can be
contracted onto f (%) N B, in particular
the latter variety also is Contractlble By
the same reason, the Varlety F %) N B:
can be contracted onto f~1(¢) N Be. So, it
remains to prove that

Hn(f_l(%> M Be, f_l(%> N Be) =~ ZF

where p 1s the number of critical points a;.

6. This can be proved by induction, with
the Morse case as induction step. Namely,
for any £ = 0,1,...,u denote by 4. the
set M with first £ discs D removed, in par-
ticular Y = "4y and % =X,
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Lemma 3. For any £ = 1,...,u, the
qroup

ﬁi(f_l(%k—l) N bBe, JF_1<*I*/€> N Be)
15 1somorphic to 7 if 1 = n and 1s trivial

for 1 # n.

Then by exact sequence of this pair we
get that the group H;(f~10%.) N Be) is
isomorphic to ZF it i =n —1 and is trivial
for all other 1.

Proof of Lemma By excision thls oroup is
equal to H;(f~ (D )N Be, f~ (77]) N B:),
where 7 is the common point of D; and .
[t is easy to see that the set f_l(Dj) N Be

can be contracted onto (f_l(Dj) NnB;)u

f _1(77]-), and hence, again by excision, the
group

(71 (D;j) N Be, F~(n;) 1 B2)
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is iIsomorphic to
Hy(f~(Dj)n B;, {1 (n;) N By),
which we know from the Morse case.

1.6. Basis of vanishing cycles defined
by a system of paths. For any j, we get
a vanishing cycle: a small sphere generating
the group H,,_1(f~ (77]) N B;). Consider
the corresponding element of group

]:[n l(f <77j> M B€>

Using the covering homotopy of the Milnor
fibration over Dy \ {critical values} move
all these cycles to elements of

Hy,—1(fH(¢) N Be)

along our p paths of x%. Obtained u ele-
ments A, freely generate the latter group.
They depend on the choice of paths (and of
the orientations of small spheres).



