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1 Holomorphic functions of several complex vari-
ables. Cauchy–Riemann equations, Cauchy for-
mula, Taylor series

Definition 1.1 Let Ω ⊂ Cn be an open subset. Recall that a function f :
Ω→ C is said to be (R-)differentiable at a point p ∈ Ω, if it is differentiable
there as a function of real variables: there exists an R-linear mapping df(p) :
TpCn ' R2n → TpC ' R2 such that

f(z)− f(p) = df(p)(z − p) + o(z − p), as z → p.

A function f is said to be C-differentiable at a point p, if it is differentiable
there and its differential df(p) is C-linear. A function f is said to be holo-
morphic on Ω, if it is C-differentiable at each point x0 ∈ Ω. A function f is
said to be holomorphic at a point x0 ∈ Cn, if it is C-differentiable in some
its neighborhood. A holomorphic mapping F = (F1, . . . , Fm) : U → V ,
U ⊂ Cn, V ⊂ Cm is defined in literally the same way: it is holomorphic, if
and only if so are its components F1, . . . , Fm.

Holomorphicity of a differentiable function is equivalent to Cauchy–
Riemann Equations. To write them, let us first recall the following prepara-
tory linear algebra.

Let C be equipped with a complex coordinate z = x+ iy. Each R-linear
operator L : C→ C can be written in the two following forms

L = αx+ βy = Az +Bz̄; α, β,A,B ∈ C.

The expression of the coefficients A and B via α and β is obtained by the
substitutions

x =
1

2
(z + z̄), y =

1

2i
(z − z̄) :

L = αx+ βy =
α

2
(z + z̄) +

β

2i
(z − z̄) = Az +Bz̄,

A =
1

2
(α− iβ), B =

1

2
(α+ iβ̄). (1.1)

Let f : U → C be a differentiable mapping of a domain U ⊂ C. For
every p ∈ U the differential df(p) : TpC ' C → Tf(p)C ' C is an R-linear
map C→ C. One has

df =
∂f

∂z
dz +

∂f

∂z̄
dz;

∂f

∂z
=

1

2
(
∂f

∂x
− i∂f

∂y
),
∂f

∂z̄
=

1

2
(
∂f

∂x
+ i

∂f

∂y
), (1.2)
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which follows from formula (1.1) applied to the differential L = df(p), taking
into account that in our case

α =
∂f

∂x
, β =

∂f

∂y
.

Proposition 1.2 (Cauchy–Riemann Equations). A differentiable function
f(z1, . . . , zn) on a domain in Cn is holomorphic, if and only if

∂f

∂z̄j
≡ 0 for every j = 1, . . . , n. (1.3)

The latter equation number j is equivalent to the system of equations{
∂ Re f
∂xj

= ∂ Im f
∂yj

∂ Re f
∂yj

= −∂ Im f
∂xj

.
(1.4)

Proof The tangent space TpCn is the direct sum of complex “coordinate
lines” parallel to the coordinate axes. Thus, the C-linearity of the differential
df(p) is equivalent to the C-linearity of its restrictions to all the coordinate
lines. The latter is equivalent to (1.3). Equivalence of equation (1.3) and
system (1.4) follows from (1.2). This proves the proposition. 2

Example 1.3 Holomorphicity is preserved under arithmetic combinations
and compositions. In particular, polynomials and rational functions and in
general, all the elementary functions (restricted to their appropriate defini-
tion domains) are holomorphic.

Remark 1.4 In the case, when n = 1 the above definition coincides with
the classical definition of holomorphic function of one complex variable. If
a function f is holomorphic in Ω, then for every complex line L ⊂ Cn the
restriction f |L∩Ω is holomorphic as a function of one variable. The next Big
Hartogs’ Theorem implies that the converse is also true.

Theorem 1.5 (Hartogs). A function f(z1, . . . , zn) is holomorphic on a do-
main Ω = Ω1×· · ·×Ωn ⊂ Cn, if and only if it is separately holomorphic:
for every j = 1, . . . , n and every given collection of points zs ∈ Ωs, s 6= j,
the function g(z) = f(z1, . . . , zj−1, z, zj+1, . . . , zn) is holomorphic on Ωj.

Remark 1.6 The nontrivial part of the theorem says that if a function is
separately holomorphic, then it is holomorphic as a function of several vari-
ables. Under the additional assumption that f is differentiable, this state-
ment follows immediately from Proposition 1.2. We will not prove Theorem
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1.5 in full generality. We will prove its weaker version under continuity
assumption (Osgood Lemma).

Holomorphic functions in several variables share the basic properties of
holomorphic functions in one variable: existence of converging Taylor series,
uniqueness of analytic extension, openness, Maximum Principle, Liouville
Theorem. At the same time we will see that the following new phenomena
hold for holomorphic functions in several complex variables, which are in
contrast with the case of one variable:

- no isolated singularities;
- erasing compact singularities: holomorphic functions on a complement

of a domain V ⊂ Cn to a compact subset K b V extend holomorphically to
all of V .

Everywhere below for every δ > 0 and z ∈ C we denote

Dδ(z) = {|w − z| < δ} ⊂ C; Dδ = Dδ(0).

The corresponding balls in Cn of radius δ will be denoted by Bδ(z) and Bδ
respectively. For every r = (r1, . . . , rn) ∈ Rn+, z = (z1, . . . , zn) ∈ Cn the
polydisk of multiradius r centered at z is the product of disks of radii rj ,
which we will denote by

∆r(z) =
∏
j

Drj (zj) = {w = (w1, . . . , wn) ∈ Cn | |wj−zj | < rj}; ∆r = ∆r(0).

For δ > 0 we denote ∆δ(z) = ∆(δ,...,δ)(z), ∆δ = ∆δ(0). In the case, when we
would like to specify the dimension of the ambient space of the polydisk, we
will write ∆n

r , ∆n
δ (z) etc.

The next theorem generalizes Cauchy formula for holomorphic functions
in one variable.

Theorem 1.7 (Multidimensional Cauchy formula). Let f : ∆r → C be a
continuous function that is holomorphic in each variable zj, j = 1, . . . , n. (In
particular, this holds for every function holomorphic on ∆r and continuous
on its closure). Then for every z = (z1, . . . , zn) ∈ ∆r one has

f(z) =
1

(2πi)n

∮
|ζ1|=r1

· · ·
∮
|ζn|=rn

f(ζ)∏n
j=1(ζj − zj)

dζn . . . dζ1. (1.5)

Remark 1.8 Let g(ζ) denote the sub-integral function in the latter right-
hand side. The multiple integral in (1.5) is independent of integration order
(Fubini’s theorem and continuity of the function g(ζ)). It is equal to the
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integral of the complex-valued differential n-form g(ζ)dζ1 ∧ · · · ∧ dζn on
the n-torus Tn =

∏n
j=1 S

1
j , S1

j = {|ζj | = rj}, oriented as a product of
positively (i.e., counterclockwise) oriented circles. That is, an orienting basis
v1, . . . , vn ∈ TζTn is formed by vectors vj ∈ TζjS1

j oriented counterclockwise.

Proof It suffices to prove the statement of the theorem in the case, when
f is holomorphic in each variable on a domain containing the closed poly-
disk ∆r: the general case is reduced to it via scaling the function f to
fε(z) = f(εz), 0 < ε < 1 (which is holomorphic in each variable on ∆r) and
passing to the limit under the integral, as ε → 1. We prove formula (1.5)
by induction in n.

Induction base: for n = 1 this is the classical Cauchy formula for one
variable.

Induction step. Let formula (1.5) be proved for the given n = k. Let us
prove it for n = k + 1. For every w = (w1, . . . , wk) ∈ Ck set

fw(t) = f(w1, . . . , wk, t).

For every fixed zk+1 ∈ Drk+1
the function g(w1, . . . , wk) = fw(zk+1) is holo-

morphic on ∆(r1,...,rk). Hence,

f(z1, . . . , zk+1) =
1

(2πi)k

∮
|ζ1|=r1

· · ·
∮
|ζk|=rk

fζ(zk+1)∏k
j=1(ζj − zj)

dζk . . . dζ1, (1.6)

by the induction hypothesis. The function fζ(t) being holomorphic in t ∈
Drk+1

for every ζ = (ζ1, . . . , ζk), it is expressed by Cauchy Formula

fζ(t) =
1

2πi

∮
|ζk+1|=rk+1

fζ(ζk+1)

ζk+1 − t
dζk+1 for every t ∈ Drk+1

.

Substituting the latter formula with t = zk+1 to (1.6) yields (1.5), by conti-
nuity and Fubini Theorem. 2

Lemma 1.9 (Osgood). Every continuous function on a domain in Cn that
is holomorphic in each individual variable is holomorphic.

Proof It sufficed to prove the statement of the lemma for a function con-
tinuous on a closed polydisk ∆r. Then Multidimensional Cauchy Formula
(1.5) holds, and its subintegral expression is a continuous family of rational
functions in z ∈ ∆r. Therefore, the subintegral expressions are holomorphic
on ∆r. They are uniformly bounded and continuous together with deriva-
tives on compact subsets in ∆r. Therefore, the integral is C1-smooth and its
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partial derivatives are equal to the integrals of partial derivatives in z of the
subintegral expression (here one can differentiate the integral by the above
boundedness and continuity statements). It satisfies Cauchy–Riemann equa-
tions, as do the subintegral functions, and hence, is holomorphic. The lemma
is proved. 2

Theorem 1.10 Let a sequence of holomorphic functions on a domain Ω ⊂
Cn converge uniformly on compact subsets. Then its limit is holomorphic
on Ω.

Proof Let fm be our converging functions. Let us restrict them to a closed
polydisk ∆ ⊂ Ω and write multidimensional Cauchy formula for them on
the polydisk ∆. For each z ∈ ∆ its left-hand side fm(z) is a converging
sequence, and so is the Cauchy integral in the right-hand side, by uniform
convergence of fm(ζ1, . . . , ζn). Therefore, the limit function satisfies the
Cauchy formula as well. For every continuous function f(ζ1, . . . , ζn) the
corresponding Cauchy integral is holomorphic in z ∈ ∆. This together with
the latter statement implies holomorphicity of the limit. The theorem is
proved. 2

Set

Z≥0 = N ∪ {0}.

Theorem 1.11 Every function f holomorphic at 0 ∈ Cn is a sum of power
series converging to f uniformly on a neighborhood of 0:

f(z) =
∑
k∈Zn≥0

ckz
k; ck ∈ C, zk = zk11 . . . zknn , c0 = f(0). (1.7)

Proof Fix a δ > 0 such that f is holomorphic on the closed polydisk ∆δ.
Let us show that the right-hand side of the Cauchy formula is a sum of
power series converging on ∆δ. For every ζj and zj with |zj | < δ = |ζj | one
has

1

ζj − zj
= ζ−1

j

1

1− zj
ζj

=

+∞∑
l=0

ζ−l−1
j zlj . (1.8)

This series converges absolutely uniformly on every disk |zj | ≤ δ′ with δ′ < δ.
Hence, the product of the latter series for all j = 1, . . . , n also absolutely
uniformly converges to 1∏

j(ζj−zj)
on ∆δ′ . Substituting formulas (1.8) for all

j to (1.5) together with permutability of integration and series summation
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(ensured by absolute uniform convergence of subintegral series and uniform
boundedness of the function on ∂∆) yields (1.7) with

ck =
1

(2πi)n

∮
|ζ1|=δ′

· · ·
∮
|ζn|=δ′

f(ζ)

ζ−k1−1
1 . . . ζ−kn−1

n

dζ1 . . . dζn. (1.9)

Substituting k = 0 yields c0 = f(0), by (1.5). 2

Proposition 1.12 Each holomorphic function is C∞-smooth. If f is holo-
morphic on a polydisk ∆r and continuous on its closure, then its derivatives
are given by the formulas

∂kf(z)

∂zk11 . . . ∂zknn
=
k1! . . . kn!

(2πi)n

∮
|ζ1|=r1

· · ·
∮
|ζn|=rn

f(ζ1, . . . , ζn)∏n
j=1(ζj − zj)kj+1

dζn . . . dζ1.

(1.10)

Proof In the multidimensional Cauchy formula the subintegral expression
a non-vanishing rational function. It is holomorphic, thus its ∂

∂z̄j
-derivatives

vanish. It is differentiable infinitely many times, and its k-th derivatives, k =
(k1, . . . , kn), are equal to k1!...kn!f(ζ1,...,ζn)

(ζ1−z1)k1+1...(ζn−zn)kn+1 . This together with Cauchy

formula and uniform boundedness of every latter derivative, as |ζj | = rj and
z varies on a compact subset in ∆r, implies that the corresponding derivative
of the Cauchy integral is the integral of the derivative. This proves (1.10).
The C∞-smoothness statement then follows immediately. 2

2 Convergence of power series. Equivalent defini-
tion of holomorphic function

Here we study convergence of power series
∑

k ckz
k and present a higher-

dimensional analogue of convergence radius theorem from the theory of func-
tions of one complex variable.

Lemma 2.1 (Abel). Consider a power series
∑

k∈Zn≥0
ckz

k. Let its terms

ckz
k at a given point z = (z1, . . . , zn) ∈ Cn be uniformly bounded, set rj =

|zj |, r = (r1, . . . , rn). Let rj > 0 for all j. Then the series converges
uniformly on compact subsets in the polydisk ∆r.

In the proof of the lemma and in what follows we will use the following
convention.
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Convention 2.2 For every δ, r ∈ Rn≥0 we say that δ < r (δ ≤ r), if δj < rj
(respectively, δj ≤ rj) for every j = 1, . . . , n.

Proof of Lemma 2.1. Fix some δ = (δ1, . . . , δn) with δj > 0, δ < r. It
suffices to show that

∑
|ck|δk <∞. Indeed, set

νj =
δj
rj
< 1, C = sup

k
|ckrk| < +∞.

Then |ck|δk ≤ Cνk. But

∑
k

νk =
n∏
j=1

(

+∞∑
s=0

νsj ) =
1∏

j(1− νj)
< +∞.

Therefore, the series
∑

k |ck|δk is majorated by a converging series C
∑

k ν
k,

and hence, converges. The lemma is proved. 2

Definition 2.3 The convergence domain of a power series
∑

k∈Zn≥0
ckz

k is

the interior of the set of points z ∈ Cn where it converges.

Consider the torus Tn = S1×· · ·×S1 identified with the product of unit
circles in C. Its points will be identified with collections t = (t1, . . . , tn),
|t1| = · · · = |tn| = 1. It acts on Cn by coordinatewise rotations:

Tn : Cn → Cn, t(z1, . . . , zn) = (t1z1, . . . , tnzn).

Corollary 2.4 The convergence domain of a series
∑

k ckz
k is a union of

polydisks centered at the origin. It is invariant under the above torus action.

Proof Given a power series, let Ω denote its convergence domain. Given a
point z = (z1, . . . , zn) ∈ Ω, let us construct a polydisk ∆r ⊂ D containing z.
For every λ > 1 close enough to 1 (dependently on z) one has w := λz ∈ Ω,
by definition. Fix the above λ and w. Set rj = |wj | = λ|zj | > |zj |, r =
(r1, . . . , rn). The sequence ckr

k is uniformly bounded, by the convergence
of the series

∑
k ckw

k. Therefore, ∆r ⊂ Ω (Abel’s Lemma 2.1) and z ∈ ∆r,
by construction. The first statement of the corollary is proved. Its second
statement follows from the first one and the invariance of each polydisk
centered at 0 under the torus action. The corollary is proved. 2

Proposition 2.5 Each power series converges uniformly on compact sub-
sets in its convergence domain Ω.
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Proof Each point z ∈ Ω is contained in two homothetic polydisks: a
polydisk ∆r ⊂ Ω and in smaller homothetic polydisk ∆r′ , ∆r′ ⊂ ∆r ⊂ ∆r,
r′ = λr, 0 < λ < 1. The series converges uniformly on ∆r′ , since it converges
at the point r and by Abel’s Lemma. Every compact subset K b Ω can be
covered by a finite number of the above uniform convergence polydisks ∆r′ .
This implies uniform convergence on K. The proposition is proved. 2

Example 2.6 The convergence domain of the series
∑

k≥0 z
k
1 in two vari-

ables (z1, z2) is the cylinder |z1| < 1. The convergence domain of the series∑
zk11 zk22 is the unit bidisk ∆1,1. The convergence domain of the series∑
(z1z2)k is the set {|z1z2| < 1}.

Let us recall that the convergence radius r of a power series
∑

k ckz
k

in one variable is given by the classical Cauchy-Hadamard formula r =

(limk→∞c
1
k
k )−1, or equivalently,

limk→∞(ckr
k)

1
k = 1.

The next proposition generalizes this formula to several variables. To state
it, let us introduce the following notation. Consider the mapping

R : Cn → Rn≥0, R(z) := (|z1|, . . . , |zn|).

It can be viewed as the map of the space Cn to its quotient Rn≥0 by the torus
action.

Proposition 2.7 Consider a given series
∑

k ckz
k in variable z = (z1, . . . , zn).

Let Ω denote its convergence domain. For every r = (r1, . . . , rn) ∈ Rn≥0 set

φ(r) := limk→∞(|ck|rk)
1
|k| , rk = rk11 . . . rknn . (2.1)

Let z = (z1, . . . , zn) ∈ Cn be a point with zj 6= 0 for all j.
1) One has z ∈ Ω, if and only if φ(R(z)) < 1.
2) One has z ∈ ∂Ω, if and only if φ(R(z)) = 1.

In the proof of the proposition we use following homogeneity and conti-
nuity properties of the upper limit function φ(r).

Proposition 2.8 1) One has

φ(λr) = λφ(r) for every λ > 0. (2.2)

2) The function φ(r) is well-defined and continuous on the set Rn+ of vectors
with positive components, provided it is well-defined for at least one r ∈ Rn+.
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Proof Formula (2.2) follows from definition. Let us prove Statement 2).
Let the upper limit φ(r) exist for at least one r ∈ Rn+. Then it exists for
every other r′ ∈ Rn+ with r′ ≤ r, by definition: (r′)k ≤ rk for every k ∈ Zn≥0.
Then φ(r) extends from the set of the latter r′ to all of Rn+ by homogeneity
formula (2.2). Let us prove that φ(r) is continuous on Rn+.

Claim 1. Let r = (r1, . . . , rn) with rj > 0 for all j, and let λ > 1. For
every r′ ∈ Rn+ with λ−1r < r′ < λr one has

λ−1φ(r) < φ(r′) < λφ(r). (2.3)

Proof One has λ−1(rk)
1
|k| < (r′)k < λ(rk)

1
|k| , by definition. This together

with the definition of the value φ(r) implies (2.3). 2

Claim 1 immediately implies continuity of the function φ at every r ∈ Rn+
(taking λ arbitrarily close to 1) and finishes the proof of Proposition 2.8. 2

Proof of Proposition 2.7. Let z ∈ Cn be a point with zj 6= 0 for all
j. Let us prove the first statement of Proposition 2.7: z ∈ Ω if and only
if φ(R(z)) < 1. Indeed, set r = R(z). Let z ∈ Ω. Then λz ∈ Ω for
some λ > 1 (openness; let us fix this λ). Hence, for every λ′ ∈ (1, λ) the
series

∑
k ck(λ

′z)k converges, and thus, its terms are uniformly bounded in
k. This implies that the upper limit of the |k|-th roots of its terms is no
greater than 1. Thus, φ(r) ≤ (λ′)−1 < 1. Conversely, let φ(r) < 1. Fix a
λ > 1 such that φ(r) < λ−1. Then φ(λr) = λφ(r) < 1. In other words,

limk→∞(|ck|(λr)k)
1
|k| < 1. This implies that the expression under limit is

less than one, thus |ck|(λr)k < 1, whenever |k| is large enough. Therefore,
∆λr ⊂ Ω, by Abel’s Lemma, and thus, z ∈ ∆λr ⊂ Ω. This proves Statement
1) of Proposition 2.7.

Let us prove Statement 2). Let r = R(z) and let φ(r) = 1. Then for
every λ ∈ (0, 1) one has φ(λr) < 1, and hence, ∆λr ⊂ Ω (Statement 1)).
This implies that z ∈ Ω. But z /∈ Ω, since φ(R(z)) = 1 and by Statement
1). Hence, z ∈ ∂Ω. Conversely, let z ∈ ∂Ω and R(z) ∈ Rn+. Then z is
the limit of a convergent sequence wm → z, wm ∈ Ω, R(wm) ∈ Rn+, and
φ(R(wm)) < 1, by Statement 1). Therefore, φ(R(z)) ≤ 1, by continuity. We
know that φ(R(z)) cannot be less than 1, since z /∈ Ω and by Statement 1).
Therefore, φ(R(z)) = 1. Proposition 2.7 is proved. 2

Now let us prove that every holomorphic function is C∞-smooth, using
the fact that it is locally the sum of a converging power series. We show
that the latter is its Taylor series.
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The higher derivatives ∂lf
∂zl

, ∂k+lf
∂zk∂z̄l

of function of one variable and the
higher derivatives

∂k+lf

∂zk∂z̄l
=

∂k+lf

∂zk11 . . . ∂zknn ∂z̄l11 . . . ∂z̄lnn
, k, l ∈ Z≥0

of a function of n complex variables are defined by subsequent differenti-
ations. They are independent on the choice of order of differentiations (if
the order of smoothness of the function is no less than the number of dif-
ferentiations). This follows from the general fact that every two differential
operators with constant coefficients commute.

Example 2.9 Let f(z) = zs11 . . . zsnn . Then

∂k+lf

∂zk11 . . . ∂zknn ∂z̄l11 . . . ∂z̄lnn
= 0 whenever l 6= 0;

∂kf

∂zk
= 0 whenever kj > sj for a certain j;

∂kf

∂zk
=

n∏
j=1

sj !

(sj − kj)!
zs−k, whenever kj ≤ sj for all j.

Remark 2.10 All the above statements on power series remain valid for
power series

∑
k ck(z − p)k with arbitrary p ∈ Cn: the convergence domain

is a union of polydisks centered at p, etc.

Proposition 2.11 Let a power series f(z) =
∑

k ckz
k has a non-empty

convergence domain. Then its sum f(z) is holomorphic and C∞-smooth
there and

c0 = f(0), ck =
1

k1! . . . kn!

∂|k|f

∂zk
(p), (2.4)

Proof Without loss of generality we consider that p = 0. The convergence
domain is a union of convergence polydisks. Fix a convergence polydisk
∆r and let us prove the above regularity statements in ∆r. We claim that
each derivative (of any order) of the series

∑
k ckz

k converges uniformly on
compact subsets in ∆r. Let φ(r), φ1(r) denote respectively the upper limits
(2.1) corresponding to the initial series and its derivative

∂

∂z1
(
∑
k

ckz
k) =

∑
k

k1z
−1
1 ckz

k.
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One has

φ1(r) = limk→∞((|k1r
−1
1 ck|rk)

1
|k|−1 ≤ limk→∞(|ck|rk)

1
|k|−1 = φ(r) ≤ 1.

Thus, the above derivative series converge uniformly on compact subsets in
∆r, by Proposition 2.7. For higher derivatives the proof is analogous: the
l-th derivation yields a new multiplier polynomial in k of fixed degree |l|,
and its contribution to the above upper limit cancels out after taking a root
of order |k|, as in the above inequality. This implies infinite differentiability
of the function f , and each its partial derivative is equal to the sum of the
corresponding derivative series. In particular, ∂f

∂z̄j
= 0, since this holds for

each term of the power series. Hence, f is holomorphic. The value ∂|k|f
∂zk

(0) is
equal to the free term of the corresponding derivative series, i.e., k1! . . . kn!ck.
This proves (2.4) and the proposition. 2

Corollary 2.12 A function f on a domain V ⊂ Cn is holomorphic, if and
only if each point p ∈ V has a neighborhood where f is a sum of a converging
power series

∑
k ck(z − p)k. The coefficients ck are given by formula (2.4).

The corollary follows from the above proposition and Theorem 1.11.

3 Analytic extension. Erasing singularities. Har-
togs Theorem

Theorem 3.1 (Uniqueness of analytic extension). Every two holomorphic
functions on a connected domain Ω ⊂ Cn that are equal on an open subset
coincide on all of Ω.

Proof It is sufficient to show that if a holomorphic function f on a con-
nected domain Ω vanishes on some open subset V ⊂ Ω, then f ≡ 0 on all of
Ω. To do this, let us consider the subset

K = ∩k∈(Z≥0)n{
∂|k|f

∂zk
= 0} ⊂ Ω : K ⊃ V.

One has f |K ≡ 0, since the latter intersection includes k = 0. The subset
K ⊂ Ω is closed, being an infinite intersection of closed subsets, since f ∈
C∞(Ω) (Corollary 2.12). The set K is open. Indeed, at each point p ∈ K the
function f has vanishing Taylor series coefficients, by definition and formula
(2.4). Hence, f ≡ 0 on a neighborhood of the point p, and thus, the latter

12



neighborhood is contained in K. Therefore, K is a nonempty closed and
open subset of a connected domain Ω, hence K = Ω and f ≡ 0 on Ω. 2

Proposition 3.2 (Openness Principle.) Each non-constant holomor-
phic function on a connected domain is an open map: the image of each
open subset is open.

Proof Let f be a non-constant holomorphic function on a connected do-
main Ω. It suffices to show that for every point z ∈ Ω the image of arbitrary
ball centered at z contains a neighborhood of the image f(z). Fix a z ∈ Ω
and a complex line L through z where f |L 6≡ const in a neighborhood of
z. The line L exists since f is locally non-constant (uniqueness of analytic
extension). The restriction of the function f to a disk in L ∩ Ω centered at
z is an open map, being a non-constant holomorphic function of one com-
plex variable. This implies that the image of every disk as above contains a
neighborhood of the point f(z), and hence, so does the image of arbitrary
ball in Ω centered at z. The proposition is proved. 2

Corollary 3.3 (Maximum Principle.) The module of a non-constant
holomorphic function on a connected domain Ω cannot achieve its maximum
in Ω.

Proof If a module of a holomorphic function f 6≡ const achieves its max-
imum at a point z ∈ Ω, then the image f(Ω) contains the point f(z) but
avoids the exterior of the circle through f(z) centered at 0. Hence, it con-
tains no its neighborhood, – a contradiction to Openness Principle. The
corollary is proved. 2

Theorem 3.4 (Liouville). Every bounded holomorphic function on all of
Cn is constant.

Proof The restriction of a bounded holomorphic function f to each complex
line through the origin is constant, being a bounded holomorphic function
on C (Liouville Theorem in one variable). Therefore, f ≡ f(0) on Cn. 2

It is known that for every domain V ⊂ C there exists a holomorphic
function on V that extends analytically to no point of its boundary. This
statement is false in higher dimensions. A basic counterexample, the Hartogs
Figure is provided by the next theorem.

13



Theorem 3.5 (Hartogs) Let R = (R1, . . . , Rn), Rj > 0, 1 ≤ k < n, r =
(r1, . . . , rk), rs < Rs. Set Rk = (R1, . . . , Rk), R

n−k = (Rk+1, . . . , Rn). Let
V ⊂ ∆Rn−k ⊂ Cn−k be an open subset. Let z = (z1, . . . , zn) be coordinates
on Cn. Set t = (z1, . . . , zk), w = (zk+1, . . . , zn),

A = (∆Rk \∆r)×∆Rn−k , B = ∆Rk × V ⊂ ∆R ⊂ Cn, Ω = A ∪B.

(In the case, when n = 2, k = 1, V = Dr2, r2 < R2, the domain Ω is the
so-called Hartogs Figure, see Fig.1.) Then every function holomorphic on
Ω extends holomorphically to the whole polydisk ∆R = ∆Rk ×∆Rn−k .

            1

t=z
        

w

0

R

     
  r

       1

          1
V

r
   2

       2

  R

Figure 1: The Hartogs Figure for n = 2: picture in the positive quadrant

Proof For simplicity, let us prove the theorem in the case, when n = 2,
k = 1: thus Rk = R1, Rn−k = R2, z = (z1, z2), t = z1, w = z2. The proof in
the general case is analogous. Let f be a function holomorphic on Ω. Fix an
arbitrary δ ∈ (r1, R1). For every w ∈ V the function f(z1, w) is holomorphic
in z1 ∈ DR1 ⊂ C, since DR1 × {w} ⊂ B ⊂ Ω. Therefore, for every z1 ∈ Dδ

it is expressed as Cauchy integral

f(z1, w) =
1

2πi

∮
|z1|=δ

f(ζ, w)

ζ − z1
dζ. (3.1)

For every fixed w ∈ DR2 the subintegral function is holomorphic in z1 ∈
Dδ. Hence, the integral is also holomorphic in z1 ∈ Dδ, as in the proof of
Osgood’s Lemma. For every fixed ζ ∈ DR1\Dδ ⊃ ∂Dδ the function f(ζ, w) is
holomorphic in w ∈ DR2 , since {ζ}×DR2 ⊂ A ⊂ Ω. Finally, the subintegral
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function is holomorphic in (z1, w) ∈ Dδ×DR2 , and hence, so is the integral.
Thus, formula (3.1) extends the function f(z1, w) holomorphically to Dδ ×
DR2 . This holomorphic extension is unique, by the Uniqueness Theorem for
holomorphic extension. Thus, f is holomorphic there and hence, on all of
∆R = DR1 ×DR2 , since δ is an arbitrary number between r1 and R1. This
proves the theorem for n = 2 and k = 1. Theorem 3.5 is proved. 2

Exercise 3.6 (Seminar.) Prove Theorem 3.5 in the general case using mul-
tidimensional Cauchy integral.

Theorem 3.7 (Erasing compact singularities). Let G ⊂ Cn be an open
subset, K b G be a compact subset. Let both G and the complement G \K
be connected. Then every function holomorphic on G \K extends holomor-
phically to all of G.

We prove this theorem only in the case, when the ambient domain is a
polydisk. Its proof in general case is more complicated and can be done by
using, e.g., Bochner–Martinelli integral formula.
Proof of Theorem 3.7 in the case, when G is a polydisk. Let us
prove the theorem in the case when n = 2: in higher dimensions the proof
is literally analogous. Let G = ∆R, R = (R1, R2). Let K1, K2 denote
respectively the images of the compact set K under the projections to the
z1- and z2-axes: K1 b DR1 , K2 b DR2 . Fix an open subset V ⊂ DR2 \K2

and a 0 < r1 < R1 such that K1 b Dr1 . Let Ω be the Hartogs figure from
Theorem 3.5 constructed by the chosen r1, V and R. One has Ω ⊂ ∆R \K.
Therefore, every function holomorphic on ∆R \K is holomorphic on Ω, and
hence, extends to a function holomorphic on all of ∆R, by Theorem 3.5. 2

Exercise 3.8 (Seminar). Prove that every function holomorphic on the
complement of a polydisk centered at the origin to a coordinate subspace of
codimension at least two extends holomorphically to the whole polydisk.

Hint. Construct an appropriate Hartogs figure in the complement to the
coordinate subspace in question.
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4 Implicit Function and Constant Rank Theorems.
Complex manifolds. Extension theorems for func-
tions on manifolds

4.1 Implicit Function and Constant Rank Theorems

Theorem 4.1 (Holomorphic Implicit Function Theorem) Let U ⊂
Cn × C`, (0, 0) ∈ U . Let F : U → C`, (X,Y ) 7→ F (X,Y ) be a holomor-
phic map with F (0, 0) = 0. Let the partial differential ∂F

∂Y (0) : T0C` →
T0C` be a non-degenerate linear operator. Then there exists a neighbor-
hood ∆ = V × W of the origin in Cn × C` such that the intersection
∆ ∩ {F = 0} is the graph {Y = Y (X)} of a holomorphic mapping Y :
V → W . Its differential dY (X0) at each point X0, set Y0 = Y (X0), is
equal to −(∂F∂Y )−1(X0, Y0) ∂F∂X (X0, Y0)dX. That is, the latter matrix product
is equal to the Jacobian matrix of the mapping Y (X) at X0.

Proof The mapping F being considered as a real mapping of the domain
U ⊂ Cn × C` = R2n × R2` to C` = R2` satisfies the statement of the real
Implicit Function Theorem from analysis. The above function Y (X) is well-
defined and C1-smooth on some domain V ⊂ Cn containing the origin, and
Y (0) = 0. The above formula for its derivative holds in terms of real linear
operators. The derivatives of the map F in X and in Y are both C-linear
at each point (X0, Y0) ∈ U , by holomorphicity. Therefore, the differential
dY (X0) is also C-linear at each point X0 ∈ V . But each C1-smooth (vector)
function on V with C-linear differential at each point is holomorphic. Hence,
Y (X) is holomorphic on V . This proves the Holomorphic Implicit Function
Theorem. 2

Recall the following definition.

Definition 4.2 A mapping F : U → V of complex domains (manifolds) is
biholomorphic, if it is holomorphic and has a holomorphic inverse.

Theorem 4.3 (Holomorphic Inverse Map Theorem) Let U ⊂ Cn be a neigh-
borhood of the origin. A holomorphic map G : U → Cn with non-degenerate
differential dG(0) is always a biholomorphic map of some neighborhood of
the origin onto an open subset in Cn.

Proof It suffices to apply the Implicit Function Theorem to the function
F (X,Y ) = G(Y )−X. 2
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Remark 4.4 Each biholomorphic mapping is always a C∞ diffeomorphism.
There exist no biholomorphic mappings of domains of different dimensions,
since this is true for diffeomorphisms.

Theorem 4.5 (Constant Rank Theorem). Let U ⊂ Cn be a neighbor-
hood of the origin. Let F : U → Cm be a holomorphic map, F (0) = 0. Let its
differential have constant rank ` ≤ m on U . Then there exist neighborhoods
V ⊂ U , W ⊂ Cm of the origin and biholomorphisms (coordinate changes)
g : V → V1 × V2 ⊂ Cn−`z × C`w, h : W → W1 ×W2 ⊂ C`x × Cm−`y such that
F (V ) ⊂W and h ◦ F ◦ g(z, w) = (w, 0).

Proof The proof of this theorem repeats the classical proof of the similar
theorem from calculus. It is done in two steps.

Step 1: case, when ` = m. Let us split coordinates in Cn into two groups
(z, w), z = (z1, . . . , zn−`), w = (w1, . . . , w`) so that the partial differential
∂F (0,0)
∂w is epimorphic, i.e., invertible. Consider the auxiliary mapping H :

(z, w) 7→ (z, F (z, w)). It is well-defined and holomorphic on a neighborhood
V1 × V2 ⊂ Cn−` × C` of the origin. Its differential at the origin is non-
degenerate, by construction. Therefore, shrinking the above domains V1,
V2, we get that it is a biholomorphism of the product V1 × V2 onto its
image: a neighborhood V of the origin in C`. Hence, the mapping H has a
holomorphic inverse of the form g : (z, y) 7→ (z,G(z, y)). By construction,
F ◦ g(z, y) = y. The theorem is proved with h = Id.

Step 2: case, when ` < m. Let (z, w) be the above splitting of the
coordinates on Cn. Let us split the coordinates in the image space Cm in
two groups (x, y), x = (x1, . . . , x`), y = (y1, . . . , ym−`), so that the map F̃ :=
x ◦F has rank ` at the origin (and hence, on some its neighborhood). Then
applying Step 1 to the map F̃ we get that there exists a map g : V1×V2 → Cn,
g(0) = 0, such that F̃ ◦ g(z, w) = w. Hence, F ◦ g(z, w) = (w,ψ(z, w)), ψ
is holomorphic on a neighborhood of the origin. Shrinking V1 and V2, we
consider that the latter neighborhood coincides with V1× V2. . The rank of
the latter map F ◦g should coincide with the rank of the map F , that is, with
the dimension ` of the w-variable. This implies that the function ψ(z, w)
has zero derivative in z and hence, depends only on w. Post-composing the
map F ◦ g(z, w) = (w,ψ(w)) with the map h : (x, y) 7→ (x, y − ψ(x)) yields
the map (z, w) 7→ (w, 0). The Constant Rank Theorem is proved. 2

17



4.2 Comlex manifolds and extension of functions

Definition 4.6 A complex manifold of complex dimension d is a real 2d-
dimensional manifold M admitting an atlas where all the transition func-
tions are biholomorphic. In more detail, it is a topological space M that
admits a covering by open sets Uj such that there exist homeomorphisms
Hj : Uj → Vj ⊂ Cd with the following property:

- for every two intersected open subsets Ui and Uj the transition maps
Hj ◦H−1

i : Hi(Ui∩Uj)→ Hj(Ui∩Uj) ⊂ Vj are holomorphic (they are biholo-
morphic, since their inverses Hi ◦H−1

j are also holomorphic by definition).
Here we suppose that M has a countable basis of neighborhoods.

Definition 4.7 A function f : M → C on a complex manifold M is holo-
morphic if for every j the function f ◦ H−1

j : Vj → C is holomorphic. A
holomorphic map M → Cn and a holomorphic map between complex man-
ifolds are defined analogously.

Definition 4.8 Let M be a n-dimensional complex manifold, and let k ∈
N, k ≤ n. A subset A ⊂ M is a k-dimensional complex (holomorphic)
submanifold, if it is closed and each point x ∈ A has a neighborhood U =
U(x) ⊂ M that admits a biholomorphism h on a neigborhood of the origin
in Cn(z1,...,zn), h(x) = 0, such that h sends the intersection A ∩ U onto the

intersection of the image h(U) with the coordinate k-plane {zk+1 = · · · =
zn = 0}. The tangent space of a submanifold at its point is defined in the
same way, as the tangent space of a real submanifold; in the holomorphic
case under consideration the tangent space has a natural structure of a
complex vector space.

Example 4.9 Let f : M → Cn−k be a holomorphic vector function, and let
A = {f = 0}. Let 0 be not its critical value: the differential df(x) at each
point x ∈ A is non-degenerate, that is, has rank k. Then A is a submanifold,
which follows from the Implicit Function Theorem.

Theorem 4.10 (Erasing codim ≥ 2 singularities). Let M be a complex
manifold, and let A ⊂ M be a complex submanifold of codimension at least
two. Then every function holomorphic on M \A extends holomorphically to
all of M .

Proof It suffices to show that each point x ∈ A has a neighborhood U =
U(x) ⊂ M such that each holomorphic function f : U \ A → C extends
holomorphically to all of U . This holds for a neighborhood U that admits
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a biholomorphism onto a polydisk so that A ∩ U is sent to a coordinate
subspace of codimension at least two: see Exercise 3.8. 2

5 Analytic sets

First in Subsection 5.1 we introduce notion of analytic subsets and present
their basic properties. Then in Subsection 5.2, 5.3 we study the case of germs
of local hypersurfaces, zero loci of germs of holomorphic functions, where
we prove Weierstrass Preparation Theorem and factoriality of the local ring
of holomorphic functions. Afterwards we will pass to the general theory of
analytic subsets.

5.1 Introduction and main properties

Definition 5.1 An analytic subset in a complex manifold M is a subset
A ⊂ M such that each point p ∈ A has a neighborhood U = U(p) ⊂ M
where there exists a finite collection of holomorphic functions fj : U → C,
j ∈ J , such that

A ∩ U = {fj = 0 | j ∈ J}.

Remark 5.2 Each analytic subset is closed. Any holomorphic submanifold
is an analytic subset, but the converse is not true. For example, the coordi-
nate cross A = {xy = 0} ⊂ C2 and the cusp curve B = {y2 = x3} ⊂ C2 are
analytic subsets. But they are not submanifolds. See a brief explanation
(with an exercise) below.

Definition 5.3 The regular part of an analytic subset A ⊂M is the subset
Areg consisting of those points x ∈ A such that there exists a neighborhood
U = U(x) ⊂M for which the intersection U ∩A is a submanifold in U . This
is an open subset in A. The complement Asing := A\Areg is a closed subset
in M called the singular part of the set A.

Exercise 5.4 (Seminar). Let U ⊂ Cn be a domain. Consider a holomorphic
function f : U → C. Set

Zf := {f = 0} ⊂ U, Zof := {x ∈ Zf | df(x) 6= 0}.

Let Zof be dense in Zf , and the complement Zsf := Zf \ Zof be non-empty.
Show that Zf,sing = Zsf . Deduce the statements of the above remark.

Hint. Suppose to the contrary that Zf is a local submanifold at a point
x ∈ Zsf . Then there exists a neighborhood W = W (x) and a biholomorphism
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H that sends W to a domain V ⊂ Cn and sends Zf ∩W to a coordinate
subspace of codimension 1, say, zn = 0. Then the line L through H(x)
parallel to the zn-axis intersects H(W ) once, and so does any close line.
But one can find a parallel line L′ arbitrary close to L that intersects H(W )
at least twice: the restriction to L of the function f ◦H−1 has zero H(x) of
total multiplicity bigger than one, since its differential at H(x) is zero.

Proposition 5.5 Any analytic subset A in a connected manifold M either
coincides with all of M , or is nowhere dense. In the latter case its comple-
ment is dense.

Proof The interior Int(A) is obviously open. It suffices to prove that it is
closed: this will imply that it is either emply, or all of M , by connectivity.
Let p ∈ M be an accumulation point of Int(A). Then p ∈ A. Hence, there
exists a neighborhood U = U(p) ⊂ M such that the functions fj defining
the set A in U are holomorphic in U and vanish on a non-empty open
subset Int(A)∩U . Hence, they vanish identically, by uniqueness of analytic
extension. This implies that A ∩ U = U and hence, p ∈ Int(A) and Int(A)
is closed. The proposition is proved. 2

Exercise 5.6 (Seminar). Show that in the above second case the comple-
ment M \A is connected.

Exercise 5.7 (Seminar). A finite union of analytic subsets A1 ∪ . . . Ak is
analytic. A finite intersection of analytic subsets A1 ∩ · · · ∩Ak is analytic.

Proof It suffices to prove these statements for union (intersection) of two
analytic subsets A1 and A2 of a complex manifold M .

Let us show that A1 ∩ A2 is analytic. Let x ∈ A1 ∩ A2. Let U be its
neighborhood in M where each Aj ∩ U is defined as zero locus of a finite
collection Fj of holomorphic functions. Then A1 ∩ A2 ∩ U is the zero locus
of the functions from the finite collection F1 ∪ F2. Therefore, A1 ∩ A2 is
analytic.

Let us now show that A1 ∪ A2 is analytic. Recall that the sets A1

and A2 are closed, being analytic. In the case, when they are disjoint,
there is nothing to prove: each point x ∈ A1 ∪ A2 lies only in one subset
Aj , its neighborhood U ⊂ M small enough intersects Aj only, and thus,
U ∩ (A1 ∪ A2) = U ∩ Aj is defined by the same collection of holomorphic
functions, as Aj ; hence it is analytic. Let now x ∈ A1 ∩ A2. Let U ⊂ M
be its neighborhood where each Aj ∩ U is zero locus of a finite collections
Fj of holomorphic functions on U . Then the zero locus of the products fg,
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f ∈ F1, g ∈ F2, coincides with U ∩ (A1 ∪ A2). Hence, A1 ∪ A2 is analytic.
The statements of the exercise are proved. 2

Theorem 5.8 The regular part of an analytic subset A ⊂M is dense in A.

Proof We prove Theorem 5.8 by induction in the dimension n of the am-
bient manifold M .

Induction base: for n = 1 the statement of the theorem is obvious.
Induction step. Let the statement of the theorem be proved for n ≤ k.

Let us prove it for n = k+1. Let x ∈ A. Let us show that Areg accumulates
to x. Fix some small neighborhood V = V (x) ⊂ M and consider that x is
the origin in a holomorphic chart containing V . We show that Areg ∩V 6= ∅
and then we apply this statement to arbitrarily small V . Thus, we deal with
A as an analytic subset in V ⊂ Cn, 0 ∈ A, where A is defined as the zero
locus of a finite collection of functions holomorphic on V . Fix a holomorphic
function f 6≡ 0 on V , f |A ≡ 0. There exists a (higher) partial derivative g
of the function f (which may be f itself) that vanishes identically on A and
such that some of its partial derivatives ∂g

∂zj
does not vanish identically on

A. Indeed in the opposite case all the partial derivatives of the function f
would vanish at 0, and hence, f ≡ 0, - a contradiction. Thus, g|A ≡ 0, and
thus, the analytic subset Γ = {g = 0} ⊂ V contains A. The regular part of
the set Γ contains the open subset Γ0 := Γ∩ { ∂g∂zj 6= 0} ⊂ Γ, since ∂g

∂zj
|A 6≡ 0

and by the Implicit Function Theorem. The intersection A0 := Γ0 ∩ A is
non-empty, by assumption. On the other hand, it is an analytic subset in
the complex manifold Γ0 of dimension n − 1. Hence, its regular part A0

reg

is dense in Γ0 ∩A (and thus, non-empty), by the induction hypothesis. But
A0
reg is contained in Areg. Indeed, for every y ∈ A0

reg and every neighborhood
W = W (y) ⊂ V such that W ∩ Γ ⊂ Γ0 the intersection W ∩ Γ0 is obviously
a submanifold in W , and A ∩W = A0

reg ∩W is a submanifold in the latter
submanifold. Hence, A ∩ W is a submanifold in W : a submanifold of a
submanifold in W is obviously a submanifold in W . Finally, Areg contains
a non-empty subset A0

reg ⊂ V . Applying the above arguments to arbitrarily
small neighhborhood V we get that Areg accumulates to x. Hence, Areg is
dense. Theorem 5.8 is proved. 2

Definition 5.9 The dimension dimxA of an analytic set A at its regular
point x ∈ Areg is the dimension at x of the submanifold A ∩ U in a small
neighborhood U = U(x). Its dimension at a point x ∈ Asing is

dimxA := limy∈Areg , y→x dimy A.
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The dimension of analytic set A is

dimA := sup
x∈A

dimxA = max
x∈Areg

dimxA.

Theorem 5.10 (given without proof). For every analytic subset A ⊂ M
its singular part Asing is an analytic subset in M of dimension strictly less
than dimA.

Proposition 5.11 The preimage of an analytic subset in a manifold N
under a holomorphic mapping M → N is an analytic subset in M .

The proposition obviously follows from definition.

Definition 5.12 A map F : M → N between topological spaces is proper,
if the preimage of every compact subset in N is a compact subset in M .

A fundamental result of the theory is the following theorem

Theorem 5.13 (Remmert Proper Mapping Theorem). Let M , N be
complex manifolds, and let A ⊂ M be an analytic subset. Let F : M → N
be a holomorphic map whose restriction to A is proper. Then the image
F (A) ⊂ N is an analytic subset.

Corollary 5.14 Let M , N be complex manifolds, and let N be compact.
Let A ⊂ M ×N be an analytic subset. Then the projection of the set A to
M is an analytic subset in M .

Theorem 5.15 (was it at the seminar?) Each holomorphic bounded func-
tion on a complement of a complex manifold to an analytic subset extends
holomorphically to the whole ambient manifold.

Proof It suffices to prove the local version of the theorem, for a bounded
holomorphic function f on the complement of a domain U ⊂ Cnz1,...,zn to the
zero locus Zg = {g = 0} of a holomorphic function g : U → C. Fix an x ∈ Zg.
It suffices to show that f extends holomorphically to a neighborhood of the
point x in Zg. Passing to appropriate local chart we can and will consider
that x = 0, set z = (z1, . . . , zn−1), w = zn, and that g is holomorphic on the
polydisk ∆ = ∆r ×Dδ ⊂ Cn−1

z × Cw, and that for every fixed z ∈ ∆r one
has g(z, w) 6≡ 0 in w ∈ Dδ. Then one can find a circle S1 = {|w| = s} ⊂ Dδ

and σ = (σ1, . . . , σn−1), σj < rj , such that ∆σ ×S1 is disjoint from the zero
locus Zg. The intersection of each disk {z} × Dδ with Zg is a discrete set
of points. The function f(z, w) with fixed z extends there holomorphically,

22



being bounded (Erasing Singularity Theorem for holomorphic functions in
one variable). Thus, for every z ∈ ∆σ and every w with |w| < s one has

f(z, w) =
1

2πi

∮
S1

f(z, η)

η − w
dη,

by Cauchy Formula. The subintegral expression is holomorphic in (z, w) ∈
∆σ×Ds. Therefore, the above Cauchy integral extends f(z, w) holomorphi-
cally to the latter product, and hence, to the neighborhood (∆σ ×Ds)∩Zg
of the point x = 0 in Zg. The theorem is proved. 2

5.2 Weierstrass polynomials. Weierstrass Preparatory The-
orem

Definition 5.16 A polynomial Pz(w) = wd + a1(z)wn−1 + · · ·+ a0(z) with
variable coefficients depending holomorphically on z = (z1, . . . , zn) from a
neighborhood of the origin in Cn with aj(0) = 0 is a holomorphic function
in n+ 1 variables (z, w) called a Weierstrass polynomial in w.

Remark 5.17 For every fixed z a Weierstrass polynomial does not vanish
identically in w and has the same number d of roots with multiplicity.

Definition 5.18 Let f(z, w) be a germ of holomorphic function at (0, 0) in
Cnz × Cw, f(0, 0) = 0, that does not vanish identically on the w-axis. Let
δ > 0, r = (r1, . . . , rn), rj > 0 be such that the function f is holomorphic on
∆r×Dδ, f(0, w) 6= 0 for w ∈ Dδ\{0} and f |∆r×∂Dδ 6= 0. Then ∆ := ∆r×Dδ

is called a Weierstrass polydisc for the function f .

Remark 5.19 If f(0, w) 6≡ 0 on a neighborhood of zero in the w-axis, then a
Weierstrass polydisk always exists. In general, if f is a holomorphic function
on a neighborhood of the origin in Cn+1, then one can choose coordinates
(z1, . . . , zn, w) in such a way that f(0, w) 6≡ 0, and hence, in the latter
coordinates a Weierstrass polydisk exists.

Theorem 5.20 (Weierstrass preparatory theorem). Let f(z, w) be a
holomorphic function on a neighborhood of the origin in Cn+1 = Cnz × Cw,
z = (z1, . . . , zn), with f(0, 0) = 0 and f(0, w) 6≡ 0. Let ∆ = ∆r × Dδ be
a Weierstrass polydisk. Then there exists a unique Weierstrass polynomial
Pz(w) such that on some neighborhood U of the origin one has f(z, w) =
h(z, w)Pz(w), h(z, w) is a holomorphic function on the latter neighborhood
U , h(0, 0) 6= 0. Moreover, Pz(w) is holomorphic on ∆r ×Cw and h(z, w) is
holomorphic and nonvanishing on ∆r ×Dδ.
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Proof Fix a Weierstrass polydisc ∆ = ∆r ×Dδ. Set gz(w) = f(z, w). The
function g0 has geometrically unique zero in Dδ: the origin. Let d denote its
multiplicity. Then for every z ∈ ∆r the function gz has d roots with multi-
plicities in Dδ and does not vanish on its boundary. Let b1(z), . . . , bd(z) de-
note its roots. The coefficients of the Weierstrass polynomial we are looking
for are uniquely determined as the basic symmetric polynomials σs = σs(z)
in bj(z) up to sign. (This already proves the uniqueness.) They vanish
at z = 0 by assumption. Let us show that they are holomorphic func-
tions in z. Indeed, they are expressed as polynomials in the power sums
σ̂s(z) =

∑
j b
s
j(z), s ∈ N. One has

σ̂s(z) =
1

2πi

∮
∂Dδ

ζs ∂f∂w (z, ζ)

f(z, ζ)
dζ. (5.1)

Indeed, the latter integral is equal to the sum of residues of the subintegral
expression. The nonzero residues may exist only at those ζ, where gz(ζ) =
f(z, ζ) = 0. The residue value corresponding to a root ζ of the function
gz(w) of multiplicity ν is equal to νζs. Indeed, one has

gz(u) = f(z, u) = c(u− ζ)ν(1 +O(u− ζ)), as u→ ζ; c 6= 0,

∂f

∂w
(z, u) = cν(u− ζ)ν−1(1 + o(1)) +O((u− ζ)ν) =

ν

u− ζ
f(z, u)(1 + o(1)).

This implies that the residue at ζ is equal to νζs. This proves (5.1). The
right-hand side in (5.1) is holomorphic in z ∈ ∆r, since the subintegral
expression is holomorphic and its restriction to the integration circle is a
uniformly bounded function whenever z run over arbitrary compact subset
in ∆r. Therefore, the integral and hence, the power sums σ̂s(z) are holo-
morphic on ∆r. Hence, the elementary symmetric polynomials σs are also
holomorphic. Therefore, the function

Pz(w) =

d∏
j=1

(w − bj(z)) = wd +

d∑
s=1

(−1)sσs(z)w
d−s

is a Weierstrass polynomial vanishing exactly on the zero set Γ = {f = 0}
of the function f . The ratio h = f

P and its inverse h−1 are holomorphic
functions on the complement (∆r ×Dδ) \ Γ. Let us show that each of them
extends holomorphically to Γ (say h; for h−1 the proof is the same): then
the theorem follows immediately. For every fixed z the function h(z, w) has
a nonzero limit, as w tends to a root of the polynomial Pz(w), since the
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latter root has the same multiplicity for both functions Pz(w) and gz(w).
Therefore, the function h(z, w) is holomorphic in w ∈ Dδ for every fixed
z ∈ ∆r. Hence, it can be written as Cauchy integral

h(z, w) =
1

2πi

∮
|ζ|=δ

h(z, ζ)

ζ − w
dζ, w ∈ Dδ.

The subintegral expression is holomorphic in (z, w) ∈ ∆ and uniformly
bounded with derivatives and continuous on compact subsets in ∆. There-
fore, the latter integral, and hence h are holomorphic there. Similarly, h−1

is holomorphic. Hence, h is a unity. 2

5.3 Local rings. Factorization of holomorphic functions as
products of irreducible ones

Definition 5.21 Let X be a topological space, x ∈ X. Two functions f
and g defined on neighborhoods Uf and Ug of the point x are called x-
equivalent, if there exists a neighborhood W = W (x) where f ≡ g. The
germ of a function at a point x is its x-equivalence class.

Remark 5.22 In general, two functions (e.g., smooth functions on a man-
ifold) defining the same germ at x can be distinct. But if two holomorphic
functions on a connected manifold M have the same germ at some point,
then they are identically equal on M , by uniqueness of analytic extension.
For every point x ∈M there is a 1-to-1 correspondence between germs at x
of functions f holomorphic on some its neighborhoods Uf depending on f
(i.e., functions holomorphic just at x) and germs of holomorphic functions
at 0 ∈ Cn, n = dimM , or equivalently, converging power series.

Definition 5.23 The ring of germs of holomorphic functions f at 0 ∈ Cn
will be called the local ring and denoted On. Recall that a unity of a ring
is an invertible element, i.e., an element u for which there exists an inverse
u−1, uu−1 = 1. Thus, a unity in On is a germ of holomorphic function that
does not vanish at 0.

Remark 5.24 The Weierstrass Preparation Theorem implies that each germ
of holomorphic function f(z, w) at (0, 0) ∈ Cnz × Cw with f(0, 0) = 0 and
f(0, w) 6≡ 0 is the product of a Weierstrass polynomial and a unity in On+1.

Definition 5.25 An element of a ring is irreducible, if it is not a unity and
cannot be presented as a product ab, where a and b are not unities. A ring is
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factorial, if each its non-zero element that is not a unity can be represented
in a unique way (up to permutation and multiplication by unities) as a
product of powers of irreducible elements times a unity.

Here we prove the following theorem.

Theorem 5.26 The local ring On is factorial.

In the proof of Theorem 5.26 we use the Weierstrass Preparatory Theo-
rem and the following well-known Gauss Lemma and property of Weierstrass
polynomials.

Lemma 5.27 (Gauss). Let R be a factorial ring. Then the polynomial ring
R[w] is also factorial.
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