CRITICAL POINTS, 22.02

V.A. VASSILIEV

1. SELF-INTERSECTION INDEX OF THE
VANISHING CYCLE OF A MORSE
SINGULARITY

We know that for a Morse singularity in n
variables the Milnor fiber V- (¢ non-critical)
is diffeomorphic to the space of the tangent
bundle of S”~L. Tt is an oriented (2n —
2)-dimensional manifold, therefore the self-
intersection index of the basic element A
of ﬁn_l(VC) (called its vanishing cycle) is
well-defined. For instance, it n = 2 then V-
is diffeomorphic to a cylinder, and hence
the self-intersection index is equal to zero.
Moreover, we know thlat any even-dimensional



hedgehog can be shaved, therefore these self-
intersection indices are equal to 0 for all
even n. (This fact has also a more gen-
eral proof: the self-intersection index of any
odd-dimensional cycle is equal to zero by
the skew commutativity of intersection in-
dices.) We will check in classes that for odd
n this index (with respect to the complex

orientation) is equal to 2(—1)*n—1)/2

2. MONODROMY OPERATOR OF AN
ISOLATED SINGULARITY

Let f: (C"0) — (C,0) be an isolated
singularity; B C C" and Ds C C the
same objects as previously. For any ( &
Dy, the corresponding Milnor fiber Vi is
defined as f~1(¢) N Be. The sets V¢ form

a locally trivial fiber bundle over the punc-
tured disc D5 = Ds \ {0}. Any element
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a of the group (D5, (y) =~ Z defines the
corresponding monodromy operator M, €
Aut(Hy—1(Ve,)). (Covering homotopy...)

On significance in PDE’s and integral ge-
ometry...

Example 1. n =1, f = 22, [:]()(Vg) ~
Zi.. For ¢ = o this group is generated by
the cycle {v/6} — {—v/d}. Monodromy: ¢
runs the circumference {5e’'}, t € [0, 27).
Two points z(t) = /6 - €/2 run a half-
circumference each, and hence permute when
t runs the entire segment |0, 27|. So, the
corresponding monodromy operator is the
multiplication by —1.

Example 2. n =1, f = 2~ ﬁO(VC) ~
71 Monodromy operator is... to be cal-

culated in classes. Clearly, it is an unipo-
tent operator of order k.



Example 3. n arbitrary, f Morse:
f=24 22 Hy, 1(V¢) =Z. Basic

monodromy operator is equal to (—1)".

Indeed, consider real coordinates x;,y; so
that z; = x; 4+ 1y;. The group H,_1(Vs)
is generated by the class of (somehow ori-
ented) sphere of radius v/ in the plane

{y1 = -+ = yp = 0} with coordinates
x1,...,%n. T'he covering homotopy can be
realized by operators T} : (z1,...,2p) —

eit/Q(zl, .. 2n), Vs = Vs For t =
27 this map sends any point of the sphere
{294 -+22 = 1} to the opposite point in
R"™. The central symmetry in R" changes
the orientation of the sphere S™~1 if and
only if n is odd.

Proposition. If f is homogeneous of de-
oree d then monodromy operator is unipo-
tent of degree d.



Proof. Take an arbitrary cycle in V- and
act on it by the family of rotations T}
(21, -+, 2n) — e”f/d(zl, ey Zn).

Exercise. If f is quasihomogeneous of
degree d with weights ay, . .., ap, then basic

monodromy operator is unipotent of degree
7

Exercise. If F(z1,...,zp,wi, ..., wn)
f(z1,...,2n) + glwy, ..., wny), then

Hypm—1(V3(F)) 2~ Hy— 1 (Vs(f)®Hp—1(Vs(9)),

and the monodromy operator for F'is the
tensor product of monodromy operators for

f and g.

3. MONODROMY GROUP

Let f be a very small strict Morsification
of f, so that all u(f) critical values of f in



points of Bg are Close to the center of Dy.

Deﬁne VC — f M Bg

The group H,,_ 1(VC) for a non-critical value
( € Dy is again isomorphic to 7MI) for
¢ € Dg a non-critical value of f . 1t 1s gen-
erated by u(f) vanishing cycles defined by
a system of non-intersecting paths in Dy
connecting ¢ with all critical values. Also,
there is a natural identification between groups
H,_ 1(V<) and H,,_ 1(Ve) if ¢ is far away

from all critical values, say ( = 0.

The group 71 (Ds\{ critical values of £}, )
is free with u(f) generators corresponding
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to critical values (and specified by distin-
guished paths): simple loops or pinches.

It acts on the group H,,_1(Vj); this ac-
tion (or its image) is called the monodromy
group of morsification f.

The monodromy operator of f commutes
with the action of the element of the group
m1(Dg \ {p critical values },6) defined by
the o-circle. So to calculate it we can study
all actions of particular pinches and then to
take the composition of these actions corre-
sponding to i pinches, the product of which
is equivalent to the circle.

4. PICARD-LEFSCHETZ FORMULA

The study of these p particular operators
is based on a local consideration at cor-
responding Morse critical points. Namely,
consider the operator M acting on H,_1(Vs)
and defined by the pinch of the j-th critical
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value and corresponding path. Let A, €

~

H,,_1(Vys) be the basic cycle vanishing along
this path.

Theorem. Operator M; sends an arbi-
trary element A € H,,_1(Vjs) to

A4 (1) U2 AN A

Take again the small ball £ around the
corresponding critical point a;; let ¢; be the
end of segments in the j-th pinch (which
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is very close to the corresponding critical
value &)

How does the small circle around &; act

~

on Hn—1<VCj)? [.e., given a cycle A €

~

Hn_l(VCj), how does this operator change
A7

Localization principle. This action
depends only on the local behavior of A in-
side 3, namely on the class of A in the rel-
ative homology group Hn_l(ng, ch \ B).
Also, it adds to A a cycle contained in-
side 3, 1.e. represented by an element of
Hn—l(‘/Cj A 5)

Remark. We know that ﬁn—l(‘/gj Ng)
is equal to Z as VC]' M3 is the Milnor fiber of
a Morse singularity. Theretore the Poincare
dual relative group Hn_l(VCj, ij \ B) also

is isomorphic to Z.
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Proposition. There is an operator (called
local variation operator)

Varj : Hy—1(Ve;, Ve \B) = Hy—1(Ve,NB)

such that the action of the j-th circle on
F]n_l(ng) is equal to the sum of identity
operator and the composition of three op-
erators:

1) the reduction modulo the complement

of 3.

2) variation operator Var;, and
3) the obvious operator Hn—1<véj NG) —

~

H n—l(VCj) induced by the inclusion of these
varieties.

Picard—Lefschetz formula is an explicit ex-
pression of this operator.

We will describe this operator in the next
lecture (in the case of arbitrary singulari-
ties, and not only Morse ones).



Example. Suppose that the intersection
of A with the ball £ is empty, i.e. A C
Ve, \ 5. Then the action of our j-th circle

(going around &;) maps A to itself. Indeed,
the sets V- \ B8 form a locally trivial (and
hence trivializable) fiber bundle over entire
neighborhood of the critical point &;.

An arbitrary cycle A C ng is homologous

to a cycle equal to the sum of a chain in
ch \ B and several times the standard gen-

erator of the group [:In_l(VCj, ch\ﬁ) ~ 7.
Then we can apply the covering homotopy
to this chain in such a way that its part
lying outside § will come exactly to itselt
(which implies in particular that the bound-
ary of the “interior” part A N B also will
come to itself) and the difference between
the result and the initial part inside £ will



be an absolute cycle in VC]. N B: the result
of our variation operator.

This operation

1) can be described in local terms, i.e. de-
pends only on the class of A in [:[n—1<Vij VC].\
B) and commutes with equivalence of sin-
oularities, and

2) is linear.

By (complex) Morse lemma it should be
expressed by a single number depending only
on n: the standard generator V; of the

group ﬁ[n_l(VCj, ng\b’) goes to C'(n) times
the standard generator A; of ﬁn_1(ng N
B).

Remark. In fact, generators of these
oroups are defined up to the choice of ori-
entations. However, we can agree to choose
these orientations in such a way that the



(Poincare) intersection index (V;, A;) is equal
to 1. Then, changing the orientation of one
of these cycles we change also the other one,
and hence our formula remains stable.

Theorem. (Picard—Lefschetz formula).
C(n) = (=)™ +1/2 i e the local varia-
tion operator of a Morse singularity maps
a generator of the group ]:[n_l(VC, 8VC) to
(—1)™"+1)/2 times the corresponding gen-
erator of Hy,_1(Vy N B).

Example. Let n be odd. By §1 the re-
duction operator sends A to 2(—1)("—1)/2y
hence M(A) = A + 2(=1)("=D/2¢(n)A.
But by Example 3 we have M(A) = —A.
Therefore C(n) = (—1)"1/2 for odd n.



