CRITICAL POINTS, 22.02

V.A. VASSILIEV

1. VARIATION OPERATORS

1.1. **Reminders.** $f : (\mathbb{C}^n, 0) \to (\mathbb{C}^1, 0),$ $B_{\varepsilon} \subset \mathbb{C}^n, D_{\delta} \subset \mathbb{C}^1.$

Milnor fiber $V_{\zeta} = f^{-1}(\zeta) \cap B_{\varepsilon}$ for $\zeta \in D_{\delta}$.

 $\tilde{H}_{n-1}(V_{\zeta}) \sim \mathbb{Z}^{\mu(f)}$ (Milnor number). \tilde{f} a perturbation of f, $\tilde{V}_{\zeta} = \tilde{f}^{-1}(\zeta) \cap B_{\varepsilon}$. $c(\tilde{f}) = \{\text{critical values of } \tilde{f}\}$. Sets \tilde{V}_{ζ} form a locally trivial bundle over $D_{\delta} \setminus c(\tilde{f})$, and sets $\partial \tilde{V}_{\zeta}$ over entire D_{δ} (so the latter bundle can be trivialized). $\pi_1(D_{\delta} \setminus c(\tilde{f}), \delta)$ acts on $H_*(\tilde{V}_{\delta})$: monodromy group.

1.2. **Operators Var**_{γ}. γ is a loop in $D_{\delta} \setminus c(\tilde{f})$ with basepoint δ (or its class in π_1). Var_{γ} is an operator

$$\tilde{H}_{n-1}(\tilde{V}_{\delta}, \partial \tilde{V}_{\delta}) \to \tilde{H}_{n-1}(\tilde{V}_{\delta}).$$

Take a relative cycle ∇ in $(V_{\delta}, \partial V_{\delta})$. Move it over the points of loop γ in such a way that $\partial \nabla$ moves in correspondence with the fixed trivialization of the fiber bundle over D_{δ} with fibers $\partial \tilde{V}_{\zeta}$. Then the result of this movement, $\tilde{\nabla}$, is a relative cycle with the same boundary, and $\tilde{\nabla} - \nabla$ is an absolute cycle in \tilde{V}_{δ} . By definition, its homology class in $\tilde{H}_{n-1}(\tilde{V}_{\delta})$ is $\operatorname{Var}_{\gamma}(\{\nabla\})$. It depends only on the homology class of ∇ and the class of the loop γ in $\pi_1(D_{\delta} \setminus c(\tilde{f}))$.

Example. Suppose that class ∇ can be represented by an absolute cycle, i.e. is the image of a class $\Delta \in \tilde{H}_{n-1}(\tilde{V}_{\delta})$ under the reduction homomorphism

$$J: \tilde{H}_{n-1}(\tilde{V}_{\delta}) \to \tilde{H}_{n-1}(\tilde{V}_{\delta}, \partial \tilde{V}_{\delta}).$$

Then

$$\operatorname{Var}_{\gamma}(J(\Delta)) = M_{\gamma}(\Delta) - \Delta$$

where M_{γ} is the monodromy operator.

1.3. **Picard-Lefschetz formula.** If f is a morsification and γ is the simple loop corresponding to the *j*-th critical value, then

 $\operatorname{Var}_{\gamma}(\nabla) = (-1)^{n(n+1)/2} \langle \nabla, \Delta_j \rangle \Delta_j.$

(Proof: consideration for Morse case.)

Corollary. For an absolute cycle $\Delta \in H_{n-1}(V_{\delta})$,

$$M_{\gamma_j}(\Delta) = \Delta + (-1)^{n(n+1)/2} \langle \Delta, \Delta_j \rangle \Delta_j.$$

1.4. Variation operator. Variation operators can be defined for an arbitrary perturbation \tilde{f} of f (not necessarily a Morsification), in particular for the function fitself. In this case $\pi_1(D_{\delta} \setminus c(f)) \sim \mathbb{Z}$, and we have a single operator.

Theorem. This operator Var : $\mathbb{Z}^{\mu} \to \mathbb{Z}^{\mu}$ is an isomorphism.

Proof 1. Replace f by morsification f. Choose a system of non-intersecting paths from δ to critical values, and corresponding basis of vanishing cycles Δ_j in $\tilde{H}_{n-1}(\tilde{V}_{\delta})$; let ∇_j be the Poincare dual basis in $\tilde{H}_{n-1}(\tilde{V}_{\delta}, \partial \tilde{V}_{\delta})$, and γ_j corresponding simple loops. The basic circle is the composition

$$\gamma_{\mu} \circ \cdots \circ \gamma_{2} \circ \gamma_{1} .$$

Lemma. $\operatorname{Var}_{\gamma_{2} \circ \gamma_{1}}(\nabla) =$
 $\operatorname{Var}_{\gamma_{1}}(\nabla) + \operatorname{Var}_{\gamma_{2}}(\nabla) + \operatorname{Var}_{\gamma_{2}}(J(\operatorname{Var}_{\gamma_{1}}(\nabla))).$

Now it is easy to check that in these bases the variation operator will be triangular with numbers $(-1)^{n(n+1)/2}$ on the diagonal.

Proof 2 (Milnor fibration on S_{ε}^{2n-1}). Definition: Knot K(f) is the set $\partial B_{\varepsilon} \cap f^{-1}(0)$.

Consider the map

 $A: S^{2n-1}_{\mathcal{E}} \setminus K(f) \to S^1$

defined by argument of f.

Lemma. This is a fiber bundle, with fibers homeomorphic to $V_{\zeta} \setminus \partial V_{\zeta}, \zeta \in D_{\delta} \setminus 0$. The closures of all these fibers (obtained by adding their common boundary K(f)) are homeomorphic to V_{ζ} .

Indeed, consider the vector field grad |f|in B_{ε} , and act by it on V_{ζ} . Consider the map $V_{\zeta} \to S_{\varepsilon}^{2n-1}$ sending any point of V_{ζ} to the end of the trajectory of this vector field (at which it leaves the ball B_{ε}). This map defines a homeomorphism between V_{ζ} and the set of points in S_{ε}^{2n-1} at which f has the same argument as ζ , and |f| is $\geq |\zeta|$.

Now, consider in S_{ε}^{2n-1} the closed subset

$$T = S_{\varepsilon}^{2n-1} \cap f^{-1}([0, +\infty)) \equiv A^{-1}(1) \cup K(f).$$

6

It is homeomorphic to V_{δ} . The exact sequence of the pair $(S_{\varepsilon}^{2n-1}, T)$: $\dots \to \tilde{H}_{k+1}(S_{\varepsilon}^{2n-1}) \to \tilde{H}_{k+1}(S_{\varepsilon}^{2n-1}, T) \to \tilde{H}_k(T) \to \tilde{H}_k(S_{\varepsilon}^{2n-1}) \to \dots$

 $\tilde{H}_{k+1}(S_{\varepsilon}^{2n-1},T) = \bar{H}_{k+1}(S_{\varepsilon}^{2n-1} \setminus T).$ $S_{\varepsilon}^{2n-1} \setminus T \text{ is fibered over } (0,2\pi) \text{ with fiber}$ $\sim V_{\delta} \setminus \partial V_{\delta}.$

By Künneth isomorphism, $\tilde{H}_{k+1}(S_{\varepsilon}^{2n-1},T) \equiv \bar{H}_{k+1}((V_{\delta} \setminus \partial V_{\delta}) \times (0,2\pi)) \simeq \bar{H}_{k}(V_{\delta} \setminus \partial V_{\delta}) \equiv \tilde{H}_{k}(V_{\delta}, \partial V_{\delta}) \sim \mathbb{Z}^{\mu}.$

For k = n - 1, the differential of our exact sequence is by construction equal to the variation operator. But it should be an isomorphism since $\tilde{H}_*(S_{\varepsilon}^{2n-1}) = 0$ in dimensions n and n - 1.