CRITICAL POINTS, 22.02

V.A. VASSILIEV

1.1. Reminders. $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{1}, 0\right)$, $B_{\varepsilon} \subset \mathbb{C}^{n}, D_{\delta} \subset \mathbb{C}^{1}$.
Milnor fiber $V_{\zeta}=f^{-1}(\zeta) \cap B_{\varepsilon}$ for $\zeta \in D_{\delta}$.

$$
\tilde{H}_{n-1}\left(V_{\zeta}\right) \sim \mathbb{Z}^{\mu(f)} \text { (Milnor number). }
$$

\tilde{f} a perturbation of $f, \tilde{V}_{\zeta}=\tilde{f}^{-1}(\zeta) \cap B_{\varepsilon}$.
$c(\tilde{f})=\{$ critical values of $\tilde{f}\}$. Sets \tilde{V}_{ζ} form a locally trivial bundle over $D_{\delta} \backslash c(\tilde{f})$, and sets $\partial \tilde{V}_{\zeta}$ over entire D_{δ} (so the latter bundle can be trivialized). $\pi_{1}\left(D_{\delta} \backslash c(\tilde{f}), \delta\right)$ acts on $H_{*}\left(\tilde{V}_{\delta}\right)$: monodromy group.
1.2. Operators $\operatorname{Var}_{\gamma} \cdot \gamma$ is a loop in $D_{\delta} \backslash$ $c(\tilde{f})$ with basepoint δ (or its class in π_{1}). $\operatorname{Var}_{\gamma}$ is an operator

$$
\tilde{H}_{n-1}\left(\tilde{V}_{\delta}, \partial \tilde{V}_{\delta}\right) \rightarrow \tilde{H}_{n-1}\left(\tilde{V}_{\delta}\right)
$$

Take a relative cycle ∇ in $\left(\tilde{V}_{\delta}, \partial \tilde{V}_{\delta}\right)$. Move it over the points of loop γ in such a way
that $\partial \nabla$ moves in correspondence with the fixed trivialization of the fiber bundle over D_{δ} with fibers $\partial \tilde{V}_{\zeta}$. Then the result of this movement, $\tilde{\nabla}$, is a relative cycle with the same boundary, and $\tilde{\nabla}-\nabla$ is an absolute cycle in \tilde{V}_{δ}. By definition, its homology class in $\tilde{H}_{n-1}\left(\tilde{V}_{\delta}\right)$ is $\operatorname{Var}_{\gamma}(\{\nabla\})$. It depends only on the homology class of ∇ and the class of the loop γ in $\pi_{1}\left(D_{\delta} \backslash c(\tilde{f})\right)$.

Example. Suppose that class ∇ can be represented by an absolute cycle, i.e. is the image of a class $\Delta \in \tilde{H}_{n-1}\left(\tilde{V}_{\delta}\right)$ under the reduction homomorphism

$$
J: \tilde{H}_{n-1}\left(\tilde{V}_{\delta}\right) \rightarrow \tilde{H}_{n-1}\left(\tilde{V}_{\delta}, \partial \tilde{V}_{\delta}\right)
$$

Then

$$
\operatorname{Var}_{\gamma}(J(\Delta))=M_{\gamma}(\Delta)-\Delta
$$

where M_{γ} is the monodromy operator.

1.3. Picard-Lefschetz formula. If \tilde{f} is

 a morsification and γ is the simple loop corresponding to the j-th critical value, then$$
\operatorname{Var}_{\gamma}(\nabla)=(-1)^{n(n+1) / 2}\left\langle\nabla, \Delta_{j}\right\rangle \Delta_{j} .
$$

(Proof: consideration for Morse case.)
Corollary. For an absolute cycle
$\Delta \in H_{n-1}\left(V_{\delta}\right)$,

$$
M_{\gamma_{j}}(\Delta)=\Delta+(-1)^{n(n+1) / 2}\left\langle\Delta, \Delta_{j}\right\rangle \Delta_{j} .
$$

1.4. Variation operator. Variation operators can be defined for an arbitrary perturbation \tilde{f} of f (not necessarily a Morsification), in particular for the function f itself. In this case $\pi_{1}\left(D_{\delta} \backslash c(f)\right) \sim \mathbb{Z}$, and we have a single operator.
Theorem. This operator Var : $\mathbb{Z}^{\mu} \rightarrow$ \mathbb{Z}^{μ} is an isomorphism.
Proof 1. Replace f by morsification \tilde{f}. Choose a system of non-intersecting paths
from δ to critical values, and corresponding basis of vanishing cycles Δ_{j} in $\tilde{H}_{n-1}\left(\tilde{V}_{\delta}\right)$; let ∇_{j} be the Poincare dual basis in $\tilde{H}_{n-1}\left(\tilde{V}_{\delta}, \partial \tilde{V}_{\delta}\right)$, and γ_{j} corresponding simple loops. The basic circle is the composition

$$
\gamma_{\mu} \circ \cdots \circ \gamma_{2} \circ \gamma_{1}
$$

Lemma. $\operatorname{Var}_{\gamma_{2} \circ \gamma_{1}}(\nabla)=$
$\operatorname{Var}_{\gamma_{1}}(\nabla)+\operatorname{Var}_{\gamma_{2}}(\nabla)+\operatorname{Var}_{\gamma_{2}}\left(J\left(\operatorname{Var}_{\gamma_{1}}(\nabla)\right)\right)$.

Now it is easy to check that in these bases the variation operator will be triangular with numbers $(-1)^{n(n+1) / 2}$ on the diagonal.

Proof 2 (Milnor fibration on $S_{\varepsilon}^{2 n-1}$). Definition: Knot $K(f)$ is the set $\partial B_{\varepsilon} \cap$ $f^{-1}(0)$.
Consider the map

$$
A: S_{\varepsilon}^{2 n-1} \backslash K(f) \rightarrow S^{1}
$$

defined by argument of f.
Lemma. This is a fiber bundle, with fibers homeomorphic to $V_{\zeta} \backslash \partial V_{\zeta}, \zeta \in D_{\delta} \backslash 0$. The closures of all these fibers (obtained by adding their common boundary $K(f)$) are homeomorphic to V_{ζ}.

Indeed, consider the vector field grad $|f|$ in B_{ε}, and act by it on V_{ζ}. Consider the map $V_{\zeta} \rightarrow S_{\varepsilon}^{2 n-1}$ sending any point of V_{ζ} to the end of the trajectory of this vector field (at which it leaves the ball B_{ε}). This map defines a homeomorphism between V_{ζ} and the set of points in $S_{\varepsilon}^{2 n-1}$ at which f has the same argument as ζ, and $|f|$ is $\geq|\zeta|$.
Now, consider in $S_{\varepsilon}^{2 n-1}$ the closed subset

$$
T=S_{\varepsilon}^{2 n-1} \cap f^{-1}([0,+\infty)) \equiv A^{-1}(1) \cup K(f)
$$

It is homeomorphic to V_{δ}. The exact sequence of the pair $\left(S_{\varepsilon}^{2 n-1}, T\right)$:
$\cdots \rightarrow \tilde{H}_{k+1}\left(S_{\varepsilon}^{2 n-1}\right) \rightarrow \tilde{H}_{k+1}\left(S_{\varepsilon}^{2 n-1}, T\right) \rightarrow$

$$
\rightarrow \tilde{H}_{k}(T) \rightarrow \tilde{H}_{k}\left(S_{\varepsilon}^{2 n-1}\right) \rightarrow \cdots
$$

$\tilde{H}_{k+1}\left(S_{\varepsilon}^{2 n-1}, T\right)=\bar{H}_{k+1}\left(S_{\varepsilon}^{2 n-1} \backslash T\right)$.
$S_{\varepsilon}^{2 n-1} \backslash T$ is fibered over $(0,2 \pi)$ with fiber $\sim V_{\delta} \backslash \partial V_{\delta}$.
By Künneth isomorphism,
$\tilde{H}_{k+1}\left(S_{\varepsilon}^{2 n-1}, T\right) \equiv \bar{H}_{k+1}\left(\left(V_{\delta} \backslash \partial V_{\delta}\right) \times(0,2 \pi)\right) \simeq$ $\bar{H}_{k}\left(V_{\delta} \backslash \partial V_{\delta}\right) \equiv \tilde{H}_{k}\left(V_{\delta}, \partial V_{\delta}\right) \sim \mathbb{Z}^{\mu}$.
For $k=n-1$, the differential of our exact sequence is by construction equal to the variation operator. But it should be an isomorphism since $\tilde{H}_{*}\left(S_{\varepsilon}^{2 n-1}\right)=0$ in dimensions n and $n-1$.

