1. Intersection forms of SINGULARITIES

So, monodromy group and variation operators are controlled by Picard-Lefschetz formulas

$$
\begin{aligned}
& \operatorname{Var}_{\gamma_{j}}(\nabla)=(-1)^{n(n+1) / 2}\left\langle\nabla, \Delta_{j}\right\rangle \Delta_{j} \\
& M_{\gamma_{j}}(\Delta)=\Delta+(-1)^{n(n+1) / 2}\left\langle\Delta, \Delta_{j}\right\rangle \Delta_{j} \\
& \text { where } \Delta \in \tilde{H}_{n-1}\left(V_{\delta}\right), \nabla \in \tilde{H}_{n-1}\left(V_{\delta}, \partial V_{\delta}\right)
\end{aligned}
$$

This makes the study of intersection forms in $\tilde{H}_{n-1}\left(V_{\zeta}\right)$ very important. Intersection matrix: $\mu(f) \times \mu(f)$ with entries $\left\langle\Delta_{i}, \Delta_{j}\right\rangle$ (for any basis of vanishing cycles).
This form is symmetric $\left\langle\Delta, \Delta^{\prime}\right\rangle=\left\langle\Delta^{\prime}, \Delta\right\rangle$ if n is odd, and anti-symmetric $\left\langle\Delta, \Delta^{\prime}\right\rangle=-\left\langle\Delta^{\prime}, \Delta\right\rangle$ if n is even. In particular, $\langle\Delta, \Delta\rangle=0$ for any Δ if n is even. For odd n, the self-intersection index of any vanishing cycle is equal to 2 if $n \equiv 1 \bmod 4$, and to -2 if $n \equiv 3 \bmod 4$.

Theorem. Let n be odd. The quadratic form $\langle\Delta, \Delta\rangle$ in $\mathbb{Z}^{\mu(f)}$ is definite if and only if f is a simple singularity.

Indeed, for all fencing singularities it already is not definite. And if $f \prec \tilde{f}$ then the corresponding space $\mathbb{Z}^{\mu(\tilde{f})}$ is naturally included into $\mathbb{Z}^{\mu(f)}$.

Monodromy group as reflection group
If n is odd, then the operator $M_{\gamma_{j}}$ works as reflection group in the group $\mathbb{Z}^{\mu(f)}$ supplied with the bilinear form $\left\langle\Delta, \Delta^{\prime}\right\rangle$: this operator keeps fixed the elements "orthogonal" to Δ_{j} with respect to this form, and maps Δ_{j} to minus itself.
Reflection groups corresponding to simple singularities are the eponymous Weyl groups (extremely important in study of simple Lie algebras).

Exercise. Calculate the action of γ_{j}^{-1}.
Answer:
$\Delta \mapsto \Delta+(-1)^{(n+1)(n+2) / 2}\left\langle\Delta, \Delta_{j}\right\rangle \Delta_{j}$.
Proof: in classes.

1.1. Change of bases.

Vanishing cycles $\Delta_{j} \in \tilde{H}_{n-1}\left(V_{\delta}\right)$ are numbered in the order of the arguments of tangents of paths leaving the non-critical value.

Then after the first (left hand) change the new basic cycles are as follows:

$$
\check{\Delta}_{2}=\Delta_{1}, \quad \check{\Delta}_{1}=M_{\gamma_{1}^{-1}}\left(\Delta_{2}\right)
$$

After the right-hand move:

$$
\check{\Delta}_{1}=\Delta_{2}, \quad \check{\Delta}_{2}=M_{\gamma_{1}}\left(\Delta_{2}\right)
$$

1.2. Stabilization. Definition. Two real function singularities, f and g are stable equivalent if they become equivalent after summation with non-degenerate quadratic forms in additional variables. For example, $f(x)+y^{2}$ and $f(x), f(x)+y^{2}$ and $f(x)-y^{2}$, but $f(x), x \in \mathbb{R}^{n}$, is not stable equivalent
to $f(x)$ considered as a function in \mathbb{R}^{n+1} not depending on the last coordinate.
For any singularity $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the class of functions in n variables stable equivalent to f consists of $\operatorname{rank}(f)+1$ equivalence classes.
Definition for complex functions is analogous, but easier (no difference between + and -).
Let $f(x):\left(\mathbb{C}^{n}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a function with isolated singularity, and $f(x)+y^{2}$ be its stabilization. Let \tilde{f} be a small Morsification of f, then $\tilde{f}+y^{2}$ is a small Morsification of $f+y^{2}$, with the same set of critical values. In particular, there is a $1-1$ correspondence between the sets of vanishing cycles Δ_{j} of \tilde{f} and $\check{\Delta}_{j} \tilde{f}+y^{2}$ defined by one and the same system of paths (up to choice of orientations).

Theorem. For an appropriate choice of orientations of vanishing cycles, the intersection matrices of morsifications \tilde{f} and $\tilde{f}+$ y^{2} are compatible:

$$
\left\langle\check{\Delta}_{i}, \check{\Delta}_{j}\right\rangle=(-1)^{n}\left\langle\Delta_{i}, \Delta_{j}\right\rangle
$$

if $i>j$, and

$$
(-1)^{n+1}\left\langle\Delta_{i}, \Delta_{j}\right\rangle
$$

if $i<j$.
In particular, double stabilization multiplies intersection matrix by -1 .
1.3. Dynkin diagram. This is a convenient representation of intersection matrices (which are usually sparse). By stabilization formulas, we can assume that f depends on $n \equiv 3(\bmod 4)$ variables. Then Dynkin diagram of \tilde{f} is a graph with $\mu(f)$ vertices, the vertices i and j are connected by $\left\langle\Delta_{i}, \Delta_{j}\right\rangle$
usual edges if this number is positive, and by $-\left\langle\Delta_{i}, \Delta_{j}\right\rangle$ dashed edges if it is negative.
Example. $n=1, f \in A_{k}, f(x)=$ x^{k+1}. Then in some basis of vanishing cycles $\Delta_{1}, \ldots, \Delta_{k}$, the intersection indices are given by $\left\langle\Delta_{i}, \Delta_{i}\right\rangle=2,\left\langle\Delta_{i}, \Delta_{j}\right\rangle=-1$ if $|i-j|=1$, and $\left\langle\Delta_{i}, \Delta_{j}\right\rangle=0$ if $|i-j|>1$. (In classes).

1.4. Intersection matrices for direct sums of singularities. Let $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow$

$(\mathbb{C}, 0)$ and $g:\left(\mathbb{C}^{m}, 0\right) \rightarrow(\mathbb{C}, 0)$ be two isolated function singularities. Let \tilde{f} and \tilde{g} their small morsifications, and $\Delta_{1}, \ldots, \Delta_{\mu(f)}$,
$\check{\Delta}_{1}, \ldots, \check{\Delta}_{\mu(g)}$ be corresponding systems of vanishing cycles defined by certain systems of paths. Then the group $\tilde{H}_{n+m-1}\left(V_{\delta}\right)$ (where $V(\delta)$ is the Milnor fiber of $f(x)+$ $g(y))$ has a basis of vanishing cycles $\Delta_{(i, j)}$, $i \in\{1, \ldots, \mu(f)\}, j \in\{1, \ldots, \mu(g)\}$, and
their intersection indices can be expressed through intersection indices of vanishing cycles of f and g. Namely,

Theorem (A.M.Gabrielov)
$\left\langle\Delta_{(a, b)}, \Delta_{(a, d)}\right\rangle=\operatorname{sgn}(d-b)^{n}(-1)^{n m+\frac{n(n-1)}{2}}\left\langle\check{\Delta}_{b}, \check{\Delta}_{d}\right\rangle$ if $b \neq d$;
$\left\langle\Delta_{(a, b)}, \Delta_{(c, b)}\right\rangle=\operatorname{sgn}(c-a)^{m}(-1)^{m n+\frac{m(m-1)}{2}}\left\langle\Delta_{a}, \Delta_{c}\right\rangle$ if $a \neq c$;
$\left\langle\Delta_{(a, b)}, \Delta_{(c, d)}\right\rangle=0$
if $\operatorname{sign}(c-a) \operatorname{sgn}(d-b)=-1$;
$\left\langle\Delta_{(a, b)}, \Delta_{(c, d)}\right\rangle=\operatorname{sgn}(c-a)(-1)^{m n}\left\langle\Delta_{a}, \Delta_{c}\right\rangle\left\langle\check{\Delta}_{b}, \check{\Delta}_{d}\right\rangle$ if $\operatorname{sgn}(c-a) \operatorname{sign}(d-b)=1$.

Exercise: to understand these formulas and formulate them in terms of Dynkin graphs.

