
Exercises in Algebraic Geometry 16.09.2021

These exercises are due by September 23rd. This is a general rule: the due date is one week
after the assignment. The final grade for the course is calculated as 0.1 of the percentage of
completely solved exercises. You may submit e.g. the high quality scans of your handwritten
solutions in the natural order. I will grade neither poor quality scans nor randomly ordered
scans. You may also submit your handwritten solutions as a hardcopy or solutions typeset
in TeX.

1. Prove that A1 is an affine algebraic variety.

2. We define algebraic varieties as topological spaces ringed with a sheaf of regular func-
tions that can be covered by finitely many open affine algebraic varieties. Introduce a
structure of algebraic variety on P1 = A1 t {∞} (with an open covering by two affine lines)
(you have to define the topology and the sheaf of regular functions).

3. Consider a subvariety Y ⊂ A2 cut out by the equation x2 − y3 = 0. Equip it with
the Zariski topology (closed subsets = finite subsets) and with a sheaf of regular functions
OY (Y \ {y1, . . . , yn}) = rational functions on Y with possible poles in {y1, . . . , yn}.

a) Construct a bijective morphism ϕ : A1 → Y .
b) Prove that ϕ is a homeomorphism but not an isomorphism of algebraic varieties.

4. Let char k = p (e.g. k = Fp). We define the Frobenius morphism Fr: A1 → A1 by the
formula z 7→ zp. Prove that Fr is a homeomorphism but not an isomorphism.

5. Let A be a commutative unital ring. Given f ∈ A we define the localization Af :=
A[z]/(1− fz).

a) Prove that Af is the set of fractions a
fn

modulo the following equivalence relation:
a
fn

= b
fm

iff for some N we have fN+ma = fN+nb.

b) Describe the kernel ideal of the natural morphism ι : A→ Af .
c) Describe the conditions on A, f when Af = 0.
d) Prove that if A has no nilpotents (resp. no zero divisors), then Af has no nilpotents

(resp. no zero divisors) either.

Exercises in Algebraic Geometry 23.09.2021

1. Let A be a finitely generated commutative unital k-algebra without nilpotents, and
0 6= f ∈ A. Show that the localized algebra Af is canonically isomorphic to the algebra of
regular functions on the basic open subset Df ⊂ Spec(A).

2. Let X = Spec(A) be an affine algebraic variety. Prove that
a) the basic open subsets Df ⊂ X, f ∈ A, form a basis of the Zariski topology on X.
b) Df ∩Dg = Dfg.

3. Prove that a) any algebraic variety is quasicompact (any open cover has a finite sub-
cover).
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b) A point of an algebraic variety is a closed subset.

4. Let f(x, y) be an irreducible quadratic polynomial. Prove that the closed subvariety
{f = 0} ⊂ A2 is isomorphic either to A1 or to A1 \ {0}.

5. Prove that the product of Zariski topologies on A1 is not equal to the Zariski topology
on A2.

Exercises in Algebraic Geometry 30.09.2021

1. Let A be a finitely generated commutative unital k-algebra. Prove E. Noether normal-
ization lemma: there is a subalgebra k[x1, . . . , xd] ⊂ A such that A is a k[x1, . . . , xd]-module
of finite type (i.e. the k[x1, . . . , xd]-algebra A is finite). In case A has no nilpotents, the
corresponding morphism Spec(A)→ Ad is called finite.

2. Let J ⊂ A be an ideal in a commutative ring A. We set S = 1 +J ⊂ A; then S ·S ⊂ S,
and S + J ⊂ S.

a) Prove Nakayama lemma: For a finite type A-module M such that JM = M , there is
s ∈ S such that sM = 0.

b) Let A be a local ring (i.e. it has a unique maximal ideal m ⊂ A), and M a finite type
A-module such that mM = M . Prove that M = 0.

c) Let A be a local ring with the maximal ideal m. Let ϕ : M → N be a morphism of
finite type A-modules such that ϕ (mod m) : M/mM → N/mN is surjective. Prove that ϕ
is surjective.

3. Let T be an endomorphism of a finite type A-module M . Assume that T is epimorphic.
a) Prove that T is invertible.
b) Prove that T is invertible on any T -invariant A-submodule N ⊂M .

4. Let T be an endomorphism of a finite type A-module M .
a) Deduce from the Cayley-Hamilton identity that there is a monic polynomial P ∈ A[t]

such that P (T ) = 0.
b) Prove that if the image T (M) lies in JM ⊂M for an ideal J ⊂ A, then one can choose

P to be of the form P (t) = tn + an−1t
n−1 + . . .+ a0, where all the coefficients ai ∈ J .

c) Prove Nakayama lemma (once again).

5. Let ϕ : B → A be a finite morphism of finitely generated commutative unital k-algebras
without nilpotents (i.e. A is a finite B-algebra).

a) Prove that the induced morphism ψ : Spec(A)→ Spec(B) is closed (i.e. the image of a
closed subset is closed) and has finite fibers.

b) Prove that if ϕ is injective, then ψ is surjective.
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Exercises in Algebraic Geometry 07.10.2021

1. Let X =
⋃N
i=1 Ui be an affine open cover of an algebraic variety X, such that all the

intersections Uij = Ui ∩ Uj are also affine: Ui = Spec(Ai), Uij = Spec(Aij). Prove that
k[X] = Ker(⊕iAi → ⊕i<jAij) (collections of elements of Ai compatible under localizations
Ai → Aij ← Aj).

2. a) Let Hi ⊂ An be a hyperplane xi = 0. Find k[An \Hi].
b) Find k[An \ {0}].
3. a) Let π : X → Y be a surjective map from an algebraic variety to a set Y . Then

we can equip Y with the quotient topology and the following sheaf of regular functions: f
on U ⊂ Y is called regular if π∗f is regular on π−1(U) ⊂ X. In case X = An \ {0}, and
Y = Pn−1 := X/k× is the set of lines in An passing through the origin, prove that we obtain
the structure of an algebraic variety on Y (i.e. produce an open cover by affine algebraic
subvarieties of Pn−1) — this is the projective space Pn−1.

b) Find k[Pn−1].
4. Given a homogeneous degree d polynomial f ∈ k[x1, . . . , xn] = k[An] let Vf ⊂ Pn−1 be

the image of the basic open subspace Df ⊂ An (with the origin removed). Prove that
a) The open sets Vf ⊂ Pn−1 form a base of the Zariski topology on Pn−1.
b) Each open set Vf is an affine algebraic variety; namely, Vf = Spec(k[x1, . . . , xn]0f ), where

k[x1, . . . , xn]0f stands for the subalgebra of degree 0 elements in the localization k[x1, . . . , xn]f .

5. a) Prove that the set of n×m matrices of rank ≤ r is an affine algebraic variety, and
it contains an open algebraic subvariety formed by all the matrices of rank exactly r.

b) Produce a structure of an algebraic variety on the Grassmannian Gr(r, n) of r-dimensional
linear subspaces in an n-dimensional vector space.

Exercises in Algebraic Geometry 14.10.2021

1. Prove that an A-module M is noetherian iff
a) Any increasing chain of submodules M1 ⊂ M2 ⊂ . . . eventually stabilizes: Mn = Mn+1

for n� 0.
b) In a short exact sequence 0→M ′ →M →M ′′ → 0 both M ′ and M ′′ are noetherian.

2. Prove that a) the polynomial algebra in infinitely many variables k[x1, x2, . . .] is not
noetherian.

b) A = k⊕ xk[x, y] ⊂ k[x, y] is not noetherian.

3. Prove that a) a topological space X is irreducible iff every non-empty open subset
U ⊂ X is dense in X.

b) A subset Z ⊂ X (with induced topology) is irreducible iff its closure Z ⊂ X is irre-
ducible.

c) The image of an irreducible subset Z ⊂ X under a continuous mapX → Y is irreducible.
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4. Let X be a noetherian topological space. Prove that
a) For any open subset U ⊂ X we have dimU ≤ dimX.
b) If X is a union of open subsets Ui, then dimX = maxi dimUi.
c) If X is irreducible, and Z $ X a closed subset, then dimX > dimZ.
d) If X is an algebraic variety, and X is a union of finitely many locally closed subsets Xi,

then dimX = maxi dimXi.
e) Give an example of a noetherian space X such that d) above fails.

5. Let X = Spec(A) be an irreducible affine algebraic variety. We denote by k(X) =
FracA the field of rational functions on X. Prove that the dimension of X equals the
transcendence degree of k(X) over k.

Exercises in Algebraic Geometry 21.10.2021

1. Prove that the open embedding A2 \ {0} ↪→ A2 is not affine.

2. Prove that a) dim(X × Y ) = dimX + dimY for algebraic varieties X, Y .
b) X × Y is irreducible if both X and Y are.

3. a) Find all the irreducible components of the affine algebraic variety X ⊂ A3 cut out
by the equations y2 = xz and z2 = y3.

b) Prove that the field of rational functions on any irreducible component of X is isomor-
phic to k(t).

4. Consider the curve C ⊂ A2 cut out by the equation y2 = x2 + x3.
a) List all the points c ∈ C where the rational function t = y/x is regular.
b) Prove that t 6∈ k[C].

5. Consider the closed subvariety Z ⊂ P3 cut out by three homogeneous equations

x1x3 = x22, x0x2 = x21, x0x3 = x1x2.

a) Prove that Z is irreducible and isomorphic to P1.
b) Find the irreducible components of the projective variety Z ′ cut out by two out of three

equations above.

Exercises in Algebraic Geometry 28.10.2021

1. Prove that the image of the Segre embedding Pn × P` ⊂ Pn`+n+` is not contained in
any linear subspace Pk for k < n`+ n+ `.

2. For a positive integer `, consider the Veronese embedding Pn ↪→ PN , where N =(
n+`
`

)
− 1: for an n+ 1-dimensional k-vector space V it embeds Pn = P(V ) into P(Sym` V ),

a line L ⊂ V goes to Sym` L ⊂ Sym` V . The monomial coordinates in PN are numbered by
sequences (i0, . . . , in) ∈ Nn+1 such that i0 + . . .+ in = `. In the homogeneous coordinates on
Pn, a point (x0, . . . , xn) goes to (vi0...in = xi00 · · · xinn ). Prove that
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a) it is indeed an embedding, and the image is cut out by quadratic equations vi0...invj0...jn =
vh0...hnvk0...kn for all quadruples of sequences such that i0 +j0 = h0 +k0, . . . , in+jn = hn+kn.

b) The image of the Veronese embedding is not contained in any linear subspace Pm for
m < N .

c) The projective variety Z ⊂ P3 of problem 5 of October 21 is the image of the Veronese
embedding of P1.

3. a) Let Y be a separable algebraic variety, and ϕ, ψ : X → Y be two morphisms from an
algebraic variety X that coincide on an open dense subvariety U ⊂ X. Prove that ϕ = ψ.

b) If we have a morphism X ⊃ U
π−→ Y , where Y is separable, and U ⊂ X is open

dense, prove that there is a maximal open subvariety U ⊂ Ũ ⊂ X such that π extends to a

morphism Ũ → Y .

4. Consider a rational morphism ψ : P2 → P2 (i.e. a morphism P2 ⊃ U → P2 defined on a
dense open subvariety) given in the homogeneous coordinates by the formula y0 = x1x2, y1 =
x0x2, y2 = x0x1.

a) Find the maximal open subvariety Ũ ⊂ P2 such that ψ is a morphism from Ũ to P2

(domain of regularity of ψ).

b) Prove that ψ−1 is also rational (i.e. ψ is birational) and find the maximal open Û ⊂ P2

such that ψ−1 is a morphism from Û to P2.
c) What are the maximal open subsets U1 ⊂ P2 and U2 ⊂ P2 such that ψ and ψ−1 define

the mutually inverse isomorphisms of U1 and U2?

5. Let X ⊂ P3 be an irreducible surface cut out by a quadratic equation.
a) Construct a birational isomorphism ψ : X 99K P2 (stereographic projection).
b) Find the domain or regularity of ψ.
c) Find the domain of regularity of ψ−1.

Exercises in Algebraic Geometry 04.11.2021

1. For a point x ∈ X of an algebraic variety we define the local dimension dimxX as the
minimum of dimU for all open neighbourhoods U of x.

a) Prove that for any point x of an irreducible algebraic variety X, the local dimension
dimxX equals dimX.

b) Give an example of an irreducible noetherian space X such that a) above fails.

2. Let π : X → Y be a morphism of algebraic varieties. Prove that
a) if π is dominant (i.e. its image is dense in Y ), then dimX ≥ dimY .
b) If π has finite fibers, then dimX ≤ dimY .
c) If π has finite fibers, then their cardinalities are bounded by some constant.

3. Let X be an affine algebraic variety. Fix a finite dimensional subspace V ⊂ k[X], and
for d ∈ N set D := V ⊕d. Every point v = (v1, . . . , vd) ∈ D defines a homomorphism of
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algebras k[x1, . . . , xd] → k[X], xi 7→ vi, and hence a morphism πv : X → Ad. Consider the
subset U ⊂ D formed by all the points v such that πv is finite.

a) Prove that U is open. In particular, it is dense if not empty.
b) We define dim′X as the minimal d ∈ N such that there is a finite morphism X → Ad.

Prove that for an open cover X =
⋃
Ui we have dim′X = maxi dim′ Ui.

c) Prove that for a finite surjective morphism π : X → Y we have dim′X = dim′ Y .
d) Prove that dim′Ad = d.

4. Compute the dimension of the
a) algebraic variety formed by all the n×m matrices of rank r.
b) Grassmannian Gr(r, n) of r-dimensional linear subspaces in an n-dimensional vector

space.
c) Algebraic variety whose points are all quadratic hypersurfaces in P6.

5. Let X ⊂ P6 be a closed 2-dimensional subvariety (a projective surface). Consider the
set LX of all lines P1 ⊂ P6 having nonempty intersection with X.

a) Prove that LX is an algebraic variety.
b) Compute dimLX .
c) Let X, Y, Z ⊂ P6 be three projective surfaces. Prove that if there exists a line P1 ⊂ P6

intersecting all the three surfaces, then there are infinitely many such lines.

Exercises in Algebraic Geometry 11.11.2021

1. Let π : X → Y be a continuous map of topological spaces, and let F (resp. G) be a
sheaf on X (resp. on Y ).

a) For an open set V ⊂ Y set π∗F(V ) := F(π−1(V )). Prove that π∗F is a sheaf on Y
(direct image or pushforward).

b) For on open set U ⊂ X consider lim
V⊃π(U)

G(V ). Give an example where this is not a

sheaf (just a presheaf). Its sheafification is denoted π−1G (inverse image or pullback).
c) Construct natural morphisms π−1π∗F → F and G → π∗π

−1G.
d) Prove that Hom(π−1G,F) = Hom(G, π∗F) (i.e. the functor π−1 is left adjoint to the

functor π∗, while π∗ is right adjoint to π−1).

2. Let x ∈ X, and let A be an abelian group. We define the skyscraper sheaf Ax as follows:
Ax(U) = 0 if x 6∈ U , and Ax(U) = A if x ∈ U . Prove that Ax = i∗A, where i : x ↪→ X is the
embedding of the closure x of x into X, and A is the constant sheaf on x.

3. Let j : U ↪→ X be the embedding of an open subset U , and let i : Z ↪→ X be the
embedding of its closed complement Z. We consider the sheaves of abelian groups.

a) Prove that for a sheaf G on Z, the stalk (i∗G)x equals Gx if x ∈ Z, and (i∗G)x = 0 if
x 6∈ Z.
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b) For a sheaf H on U we define j!H (extension by zero or shriek extension) as the sheafi-
fication of the following presheaf on X : V 7→ H(V ) if V ⊂ U , and V 7→ 0 if V 6⊂ U . Prove
that the stalk (j!H)x = Hx if x ∈ U , and (j!H)x = 0 if x 6∈ U .

c) Prove that we have a short exact sequence of sheaves 0→ j!j
−1F → F → i∗i

−1F → 0
for a sheaf F on X .

4. For a section σ ∈ F(V ) of a sheaf F of abelian groups on X we define its support
supp(σ) ⊂ V as the set of points x ∈ V such that the image σx of σ in the stalk Fx does not
vanish.

a) Prove that supp(σ) is a closed subset of V .
b) For a closed subset Z ⊂ X we define FZ(V ) as a subgroup in F(V ) formed by all the

sections with support in Z ∩ V . Prove that V 7→ FZ(V ) is a sheaf. It is called the subsheaf
with supports in Z.

c) Prove that we have a short exact sequence of sheaves 0 → FZ → F → j∗j
−1F in

notations of Problem 3.
d) Prove that if F is flabby, then this s.e.s. extends to 0→ FZ → F → j∗j

−1F → 0.

5. Let OX be the structure sheaf of an algebraic variety X, and let Z ⊂ X be a closed
subvariety. For an open U ⊂ X we denote by IZ(U) ⊂ OX(U) the ideal of regular functions
vanishing at Z ∩ U . Prove that

a) U 7→ IZ(U) is a sheaf (sheaf of ideals of Z).
b) The quotient sheaf OX/IZ is isomorphic to i∗OZ , where i : Z → X is the closed

embedding, and OZ is the structure sheaf of Z.

Exercises in Algebraic Geometry 18.11.2021

1. a) Let X be an algebraic variety (not necessarily an affine one), and let f ∈ k[X] = A,
and let Xf ⊂ X be the open subset formed by all the points x ∈ X such that f(x) 6= 0.
Prove that k[Xf ] = Af (localization).

b) Prove that X is affine iff there is a finite set f1, . . . , fn ∈ A such that Xfi are all affine,
and f1, . . . , fn generate the unit ideal (1) = A.

2. Prove that a morphism π : X → Y is affine iff for any affine open V ⊂ Y its preimage
π−1(V ) is affine as well.

3. a) Let A be a quasicoherent sheaf of OY -algebras (i.e. A(V ) is a finitely generated
commutative k[V ]-algebra without nilpotents for any open V ⊂ Y ). Prove that there is
a unique algebraic variety X and a morphism π : X → Y such that for any affine open
V ⊂ Y we have an isomorphism π−1(V ) ' Spec(A(V )), and for any affine open embedding
U ⊂ V the morphism π−1(U) ↪→ π−1(V ) corresponds to the restriction homomorphism
A(V )→ A(U). This variety X is denoted Spec(A).

b) Prove that the morphism π : X = Spec(A)→ Y is affine, and A = π∗OX . Conversely,
if π : X → Y is an affine morphism, then A := π∗OX is a quasicoherent sheaf of OY -algebras,
and X = Spec(A).
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c) Prove that π∗ gives rise to an equivalence of categories of quasicoherent OX-modules
and the category of A-modules (i.e. quasicoherent OY -modules equipped with a structure of
A-module).

4. A vector bundle of rank n over an algebraic variety Y is a morphism of algebraic varieties
π : V → Y with the following auxiliary structure: for some open cover Y =

⋃
Ui we have

isomorphisms ψi : π
−1(Ui) → An × Ui such that for any i, j and any open affine subvariety

W = Spec(A) ⊂ Ui ∩Uj, the automorphism ψij := ψj ◦ψ−1i of An×W = Spec(A[t1, . . . , tn])
is induced by an A-linear automorphism φ of the algebra A[t1, . . . , tn], i.e. φ(a) = a for
any a ∈ A, and φ(tk) =

∑
akltl, where akl ∈ A. An isomorphism η : (V , π, {Ui}, {ψi}) →

(V ′, π′, {U ′k}, {ψ′k}) of vector bundles is an isomorphism of the algebraic varieties η : V → V ′
such that π = π′ ◦ η, and V , π along with the cover Y =

⋃
Ui ∪

⋃
U ′k and isomorphisms

ψi, ψ
′
k ◦ η also define a structure of vector bundle on V . Finally, let E be a locally free sheaf

of rank n on Y generating the symmetric algebra SymOY
E , and V := Spec(SymOY

E) with the
projection morphism π : X → Y . For any open affine U ⊂ Y such that the restriction E|U is
free we choose a basis of sections in E|U , and let ψ : π−1(U)→ An × U be the isomorphism
we get under identification of SymOY (U)E(U) with OY (U)[t1, . . . , tn].

a) Prove that (V , π, {U}, {ψ}) is a vector bundle of rank n over Y that does not depend
on the choice of bases in E|U up to isomorphism. We will call it the vector bundle associated
with E , and we will denote it Vect(E).

b) A section of a morphism π : X → Y over an open U ⊂ Y is a morphism σ : U → X
such that π ◦ σ = IdU . Clearly, the sections form a sheaf of sets to be denoted SectX/Y .
Prove that if π : V → Y is a vector bundle of rank n, then the sheaf SectV/Y has a natural
structure of OY -module, and it is a locally free OY -module of rank n.

c) Let E be a locally free sheaf of rank n on Y , and V = Vect(E), and let S = SectV/Y
be the sheaf of sections of V over Y . Prove that S ' E∨ := HomOY

(E ,OY ), and this
isomorphism can be constructed as follows. A section σ ∈ E∨(U) over an open U ⊂ Y
can be viewed as an element σ ∈ HomOU

(E|U ,OU), so that σ defines a homomorphism of
OU -algebras SymOU

E|U → OU , that in turn defines a morphism of spectra U = Spec(OU)→
Spec(SymOU

E|U) = π−1(U), i.e. a section of V over U . So you have to check that this
assignment gives the desired isomorphism from E∨ onto S.

d) Prove that the above construction defines a bijection between the isomorphism classes
of locally free sheaves of rank n on Y and the isomorphism classes of vector bundles of rank
n over Y .

5. Let V = kn+1, and Pn = P(V ). In the trivial vector bundle Pn × V we consider
the tautological vector subbundle S of rank 1 (line bundle) (its fiber over x ∈ Pn is the
corresponding line `x ⊂ V ). The corresponding rank 1 locally free sheaf of sections (invertible
sheaf) is denoted OPn(−1). Its dual HomOPn (OPn(−1),OPn) is denoted OPn(1). For n ∈ N
we set OPn(±n) := OPn(±1)⊗n (tensor product over OPn). Prove that

a) The global sections Γ(Pn,OPn(−n)) = 0.
b) The global sections Γ(Pn,OPn(n)) = SymnV ∗.
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Exercises in Algebraic Geometry 25.11.2021

We know already that a hypersurface H ⊂ PN is the zero set of a homogeneous poly-
nomial in N + 1 variables. Geometrically, the degree d of this polynomial is the number
of points (with multiplicities) of the intersection H ∩ ` with a generic line ` ⊂ PN . An
effective divisor D on PN of degree d is a formal linear combination D =

∑
ciHi of hyper-

surfaces with coefficients ci ∈ N such that
∑
cidi = d (di = degHi). The set of degree d

effective divisors is naturally isomorphic to the set of degree d polynomials in N + 1 vari-
ables up to proportionality, i.e. to PSymd(kN+1). In other words, degree d effective divisors
are naturally parametrized by the algebraic variety PSymd(kN+1); moreover, an open sub-
variety parametrizes the irreducible divisors. In this assignment we will arrive at a similar
parametrization for effective algebraic cycles (formal positive linear combinations of irre-
ducible subvarieties in PN of dimension n < N): Chow coordinates.

1. Let π : X → Y be a surjective morphism of irreducible algebraic varieties of dimensions
n,m. Prove that

a) For any y ∈ Y and any irreducible component Z of the fiber π−1(y) we have dimZ ≥
n−m.

b) There is an open U ⊂ Y such that for any y ∈ U we have dimπ−1(y) = n−m.
c) dim π−1(y) is an upper-semicontinuous function on Y (i.e. for any k ∈ N, the set
{y ∈ Y : dimπ−1(y) ≤ k} is open in Y ) if π is additionally assumed to be proper.

d) Give an example where dim π−1(y) is not upper-semicontinuous when π is not assumed
to be proper.

e) If both X and Y are projective, and all the fibers π−1(y) are irreducible of the same
dimension (but we do not assume anymore that X is irreducible, though we keep the as-
sumption that Y is irreducible), then X is irreducible.

2. The set of hyperplanes in PN is naturally parametrized by the points of the dual
projective space P∨ (nonzero linear functionals on kN+1 up to proportionality). Let X ⊂ PN
be an irreducible projective subvariety of dimension n. We consider the closed subvariety
Γ ⊂ (P∨)n+1 × X formed by all the collections (ξ0, . . . , ξn, x) such that all the hyperplanes
ξi ⊂ PN contain the point x ∈ X. We have two projections: φ : Γ → (P∨)n+1, ψ : Γ → X.
Prove that

a) Γ is irreducible of dimension N(n+ 1)− 1.
b) φ(Γ) is an irreducible closed subvariety of (P∨)n+1 of codimension 1.
c) There is a polynomial FX in n+ 1 groups of N + 1 variables, homogeneous of degree di

in each group, with all factors of multiplicity 1, such that φ(Γ) is cut out by a single equation
FX . It is called the associated form of the subvariety X, and its coefficients are called the
Chow coordinates of X.

3. Prove that a point x ∈ PN lies in X iff any n + 1 hyperplanes ξ0, . . . , ξn containing x
satisfy the equation FX(ξ0, . . . , ξn) = 0. Hence X can be uniquely reconstructed from FX .

4. Prove that a) all the degrees di of Problem 2 are equal. We will denote them by d.
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b) d is the maximal cardinality of the intersection E ∩ X, where E ⊂ PN is a linear
subspace of dimension N − n such that E ∩X is finite. This number is called the degree of
X.

The set of all nonzero forms F in n+ 1 groups of N + 1 variables, homogeneous of degree
d in any group, up to proportionality, is the set of points of an appropriate projective space
PM(N,n,d). One can check that the forms F equal to FX for some irreducible projective sub-
variety X of dimension n and degree d form a quasiprojective subvariety CN,n,d ⊂ PM(N,n,d).
If we associate to a cycle Y =

∑
niXi (dimXi = n,

∑
ni deg(Xi) = d, and all the subva-

rieties Xi are irreducible) the form FY :=
∏
F ni
Xi

, then the forms F equal to FY for some
n-dimensional cycle Y of degree d form a projective subvariety BN,n,d, containing CN,n,d as
an open (but not necessarily dense) subset. It is called the Chow variety.

5. Prove that B3,1,3 has 4 irreducible components of dimension 12.

Exercises in Algebraic Geometry 02.12.2021

The goal of this assignment is an algebraic definition of the degree of a projective variety,
that is the Hilbert polynomial.

1. A polynomial P ∈ Q[z] is called integral if P (n) ∈ Z for n� 0.
a) Prove that there are integers c0, . . . , cr such that P (z) = c0

(
z
r

)
+ c1

(
z
r−1

)
+ . . . + cr. In

particular, P (n) ∈ Z for all n ∈ Z.
b) Let f : Z → Z be an arbitrary function. Assume that there is an integral polynomial

Q(z) such that the finite difference function ∆f(n) = f(n + 1) − f(n) coincides with Q(n)
for n � 0. Prove that there is an integral polynomial P (z) such that f(n) = P (n) for all
n� 0.

2. Let M = ⊕Md be a finitely generated graded module over A = k[t0, . . . , tn]. For
l ∈ Z we define the twisted module M(l) as M(l)d := Md+l. We define a homogeneous ideal
Ann(M) ⊂ A (the annihilator of M) as {s ∈ A : s ·M = 0}. Prove that

a) There is a filtration 0 = M0 ⊂ M1 ⊂ . . . ⊂ M r = M such that for any i we have
M i/M i−1 ' (A/pi)(li), where pi ⊂ A is a homogeneous prime ideal, and li ∈ Z.

b) If p is a homogeneous prime ideal in A, then p ⊃ Ann(M) iff p ⊃ pi for some i. In
particular, the minimal elements of the set {p1, . . . , pr} are exactly the minimal homogeneous
prime ideals containing Ann(M).

c) For any such ideal p the number of its occurences in the (multi)set {p1, . . . , pr} equals
the length of the localized module Mp over the local ring Ap. In particular, this number is
independent of the choice of a filtration in a) above. It is called the multiplicity of M at p
and denoted µp(M).

3. We define the Hilbert function φM of a finitely generated graded A-module M as
φM(l) := dimMl. Prove that
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a) There is a unique integral polynomial PM(z) ∈ Q[z] such that φM(l) = PM(l) for l� 0
(the Hilbert polynomial).

b) degPM is equal to the dimension of the projective variety in Pn defined by the ideal
Ann(M).

For a projective variety Y ⊂ Pn its Hilbert polynomial PY is defined as the Hilbert
polynomial of the A-module k[C(Y )] (the homogeneous coordinate ring of Y ). If dimY = r,
the leading coefficient of PY multiplied by r! is called the degree of Y .

4. Prove that a) deg Y is a positive integer.
b) Let Y = Y1 ∪ Y2, where dimY1 = dimY2 = r > dim(Y1 ∩ Y2). Then deg Y = deg Y1 +

deg Y2.
c) degPn = 1.
d) If H ⊂ Pn is a hypersurface cut out by a homogeneous polynomial of degree d, then

degH = d.
e) If Y 6⊂ H, and Y is equidimensional of dimension r, then we know that Y ∩ H =

Z1 ∪ . . . ∪ Zs, where Zj are irreducible subvarieties of dimension r − 1. The multiplicity
of intersection of Y and H along Zj is defined as ι(Y,H;Zj) := µpj(A/(IY + IH)), where
pj, IY , IH are the homogeneous ideals of the varieties Zj, Y,H. Prove that

s∑
j=1

ι(Y,H;Zj) · degZj = deg Y · degH

(Bezout theorem).
f) deg Y equals the number of points of intersection of Y with a general linear subspace of

complementary dimension. Thus the definitions of this home assignment and the previous
one match.

5. Prove that a) the degree of the image of the Segre embedding Pr × Ps ↪→ P(r+1)(s+1)−1

equals
(
r+s
r

)
.

b) The degree of the image of the Veronese embedding of Pr into P(Symdkr+1) equals dr.

Exercises in Algebraic Geometry 09.12.2021

1. a) Let C ⊂ A3 be a reducible algebraic curve equal to the union of 3 coordinate lines.
Prove that the ideal JC ⊂ k[x, y, z] can not be generated by 2 elements.

b) Give an example of an affine curve that can not be a closed subvariety in A2021.
c) Give an example of an irreducible affine curve that can not be a closed subvariety in

A2021.

2. a) Let X ⊂ P2 be a reducible 0-dimensional subvariety: a union of 3 points not lying
on a line P1 ⊂ P2. Prove that the ideal of X in the homogeneous coordinate ring of P2 can
not be generated by 2 elements.

b) Let Y ⊂ A2 be a union of finitely many points. Prove that Y can be cut out by 2
equations. Hence the ideal JY ⊂ k[x, y] is the radical of an ideal generated by 2 elements.
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c) Let Z ⊂ P2 be a union of finitely many points. Prove that Z can be cut out by 2
homogeneous equations.

3. Let C ⊂ A3 be a closed irreducible algebraic curve not equal to a vertical line.
a) Prove that there is a polynomial f(x, y) such that f |C ≡ 0 (here x, y, z are the coordi-

nates on A3).
b) Prove that all such polynomials form a principal ideal I = (P ) ⊂ k[x, y].
c) Prove that the curve cut out by P in A2 is the closure of the image of C ⊂ A3 under

the projection A3 → A2, (x, y, z) 7→ (x, y).

4. Let h(x, y, z) = h0(x, y)zn+ . . .+hn(x, y) ∈ JC be a polynomial of the minimal positive
degree in z vanishing on C ⊂ A3 and such that h0(x, y) is not divisible by P .

a) Prove that for f(x, y, z) = f0(x, y)zm + . . .+ fm(x, y) ∈ JC we have f · hm0 = h · g +Q,
where Q is divisible by P .

b) Prove that the equations h = 0 = P cut out a reducible curve C ′ ⊂ A3 consisting of C
and a few (possibly none) vertical lines defined by equations h0 = 0 = P .

5. Prove that a) any closed curve C ⊂ A3 can be cut out by 3 equations.
b) Any closed curve X ⊂ P3 can be cut out by 3 homogeneous equations.

Exercises in Algebraic Geometry 16.12.2021

1. Let F be a coherent sheaf on an open subvariety U ⊂ X of an algebraic variety. Prove
that there is a coherent sheaf G on X such that G|U = F .

2. a) Prove that the Grassmannian Gr(2, 4) can be embedded into P5 as a quadratic
hypersurface Π (Plücker quadric). Thus the points of the Plücker quadric parametrize the
lines P1 ⊂ P3.

b) Prove that any plane P2 ⊂ Π ⊂ P5 is of the following kind: it is either the set of lines
` ⊂ P3 containing a point p ∈ P3, or the set of lines ` ⊂ P3 contained in a plane P2 ⊂ P3.

3. Let X ⊂ P3 be a surface of degree d cut out by a homogeneous polynomial F (thus
X is represented by a point of PN , N = 1

6
(d + 1)(d + 2)(d + 3) − 1, given by F up to

proportionality). Prove that
a) the incidence subset Γ = {(`, F ) : ` ⊂ X} ⊂ Π × PN is actually a closed subvariety

(cut out by equations homogeneous in coefficients of F and in Plücker coordinates on Π).
b) Γ is irreducible.
c) dim Γ = 1

6
d(d+ 1)(d+ 5) + 3.

d) If d > 3, then a surface X corresponding to a point of an open (nonempty) subset
U ⊂ PN contains no lines.

4. Prove that a) the cubic surface X0 ⊂ P3 cut out by the equation x1x2x3 = x30 contains
exactly three lines.

b) Any cubic surface X ⊂ P3 contains at least one line.
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c) There is a nonempty open subset U ⊂ P19 parametrizing cubic surfaces such that any
cubic surface corresponding to a point of U contains finitely many lines.

d) There are cubic surfaces containing infinitely many lines.

5. a) Let X ⊂ P3 be a smooth quadric. Prove that the subset ΠX ⊂ Π formed by all the
lines lying in X is the union of 2 nonintersecting curves, each of which is isomorphic to P1.

b) Prove that the set of non-smooth quadrics forms a hypersurface in P9.

Exercises in Algebraic Geometry 18.01.2022

1. Let f ∈ k[x1, . . . , xn]. Prove df =
∑n

i=1
∂f
∂xi
dxi.

2. Let X and Y be affine algebraic varieties. Prove

Ω[X × Y ] = Ω[X]⊗k[X] k[X × Y ]⊕ Ω[Y ]⊗k[Y ] k[X × Y ].

3. Let C ⊂ A2 be the affine algebraic curve cut out by x2 + y2 = 1. Let char k 6= 2. Prove
that

a) Any regular function on C can be uniquely written in the form f(y) + xg(y) for some
polynomials f, g.

b) Any regular differential form on C can be uniquely written in the form f(y)dx+(g(y)+
xh)dy for some polynomials f, g and a constant h ∈ k.

c) The differential forms dx
y

on Dy and −dy
x

on Dx coincide on the intersection Dxy of these

open sets. Thus they give rise to a global regular differential form ω on C.
d) Write down ω in the form of b).

4. Consider the elliptic curve E ⊂ P2 cut out by y2z = x(x − z)(x − λz), where λ ∈ k is
a fixed parameter distinct from 0 and 1. In the open chart Dz ∩E, consider the differential
form ω = dx

y
. Prove that

a) ω is regular on Dz ∩ E.
b) ω extends (uniquely) to a regular differential form on the whole of E.
c) ω vanishes nowhere on E.
d) Any global regular differential form on E is a scalar multiple of ω.

5. Prove that any algebraic group is smooth at any point.

Exercises in Algebraic Geometry 25.01.2022

1. Recall the correspondence between locally free sheaves and vector bundles of Problem 4
of 18.11.2021. For a smooth algebraic variety X let T ∗X denote the cotangent vector bundle
over X whose local sections form the sheaf of Kähler differentials ΩX . Let X = Gr(r, n) be
the Grassmannian of r-dimensional linear subspaces in an n-dimensional vector space V . It
is equipped with two vector bundles S,Q: the fiber of S over an r-dimensional subspace
U ⊂ V is U , and the fiber of Q over U is V/U . Prove that T ∗Gr(r, n) ∼= Q∗ ⊗ S (where Q∗
stands for the dual vector bundle to Q).
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2. Assume the characteristic of k is not 2. Let V be a 2n-dimensional vector space equipped
with a nondegenerate bilinear skew-symmetric, i.e. symplectic form 〈 , 〉. An n-dimensional
subspace L ⊂ V is called Lagrangian if 〈 , 〉|L = 0. Prove that

a) The set of all Lagrangian subspaces L ⊂ V forms a closed subvariety of Gr(n, 2n),
denoted LGr(V ): Lagrangian Grassmannian.

b) T ∗LGr(V ) ∼= Sym2S.

3. Assume the characteristic of k is not 2. Let V be a 2n-dimensional vector space
equipped with a nondegenerate bilinear symmetric form ( , ). An n-dimensional subspace
L ⊂ V is called self-orthogonal if ( , )|L = 0. Prove that

a) The set of all self-orthogonal subspaces L ⊂ V forms a closed subvariety of Gr(n, 2n),
denoted SGr(V ): self-orthogonal Grassmannian.

b) SGr(V ) is disconnected.
c) T ∗SGr(V ) ∼= Λ2S.

4. Let F0(x0, . . . , xn), . . . , Fn(x0, . . . , xn) be homogeneous polynomials of degrees d0, . . . , dn.
Here x0, . . . , xn are coordinates on an n + 1-dimensional vector space V . Let Γ ⊂ P(V ) ×∏n

i=0 P(SymdiV ∗) be the closed subvariety formed by all the collections (x, F0, . . . , Fn) such

that F0(x) = . . . = Fn(x) = 0. Let ϕ : Γ →
∏n

i=0 P(SymdiV ∗) denote the projection. Prove
that

a) dim Γ + 1 = dimϕ(Γ) + 1 = dim
∏n

i=0 P(SymdiV ∗).
b) There exists a polynomial R(F0, . . . , Fn) in coefficients of Fi such that R = 0 iff the

system F0 = . . . = Fn = 0 has a nonzero solution.

5. Let X ⊂ Pn be a hypersurface cut out by a homogeneous polynomial F (x0, . . . , xn) of
degree d.

a) Prove that the singular points of X are the solutions of the system of equations F =
∂F
∂x0

= . . . = ∂F
∂xn

= 0.

b) Prove that if d is not divisible by the characteristic of k, then the first equation F = 0
in a) follows from the other ones.

c) Assume k has charactertic 0. Prove that the set S of all F ∈ P(SymdV ∗) defining
singular hypersurfaces in Pn forms a hypersurface S ⊂ P(SymdV ∗).

Exercises in Algebraic Geometry 01.02.2022

1. Consider a cubic curve Ca ⊂ P2 cut out by the equation

x3 + y3 + z3 + a(x+ y + z)3 = 0.

a) Find all a such that Ca is singular.
b) Find all the singular points of Ca.
c) For which a the curve Ca is irreducible?
d) Prove that if a cubic curve C ⊂ P2 has 3 singular points, then C is a union of 3 lines.
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e) Prove that if a cubic curve C ⊂ P2 is irreducible and not smooth, then it is birationally
isomorphic to P1.

2. Prove that if a degree d ≥ 2 hypersurface X ⊂ Pn contains a linear subspace L ' Pr ⊂
Pn, r ≥ n/2, then X can not be smooth.

3. a) Let X ⊂ P(V ) be a smooth hypersurface of degree d ≥ 2. Prove that the set of all
hyperplanes H ⊂ P(V ) tangent to X at some (varying) point x ∈ X forms a hypersurface
X∨ ⊂ P(V ∗). In case X is singular, we define X∨ as the closure of the set of hyperplanes
tangent to X at the smooth points of X.

b) Determine the dual curve X∨ for the curve X ⊂ P2 cut out by the equation

x3 + y3 + z3 = 0.

4. Find all the singular points of the a) Steiner surface cut out by the equation

x21x
2
2 + x20x

2
2 + x20x

2
1 − x0x1x2x3 = 0.

b) Dual Steiner surface cut out by the equation

y0y1y2 + y0y1y3 + y0y2y3 + y1y2y3 = 0.

5. Assume k has charactertic 0. a) Prove that almost all (that is, all but finitely many)
fibers of a function f : An → A1 are smooth.

b) Prove that for a morphism π : X → Y of smooth algebraic varieties, there is a nonempty
open subset U ⊂ Y such that for any y ∈ U the fiber π−1(y) is smooth.

c) Prove the following stronger version of Bertini theorem. Let X ⊂ Pn be a smooth
irreducible subvariety, and let L ' Pn−2 ⊂ Pn be a linear subspace of codimension 2 such
that L ∩ X is smooth and L is not contained in X. Consider the Lefschetz pencil P ' P1

formed by all the hyperplanes L ⊂ H ⊂ Pn. Then for almost all H ∈ P , the intersection
X ∩H is smooth.

Exercises in Algebraic Geometry 08.02.2022

Recall that Pic(C) is the quotient group of divisors on a curve C modulo the subgroup of
principal divisors, and Picd(C) ⊂ Pic(C) is the subset of degree d divisors.

1. Let E ⊂ P2 be a smooth elliptic curve cut out by the equation y2z−x3−axz2−bz3 = 0
(in particular, the polynomial t3 + at + b does not have multiple roots). We denote e :=
(0, 1, 0) ∈ E. We consider a map ϕ : E → Pic0(E), u→ [u− e]. Prove that

a) ϕ is injective.
b) Given u, v ∈ E, there exists w ∈ E such that [u+ v] = [w + e] ∈ Pic2(E).
c) For any effective divisor D on E of degree d, there is w ∈ E such that

[D] = [w + (d− 1)e] ∈ Picd(E).

d) ϕ is a bijection of sets E
∼−→ Pic0(E). It is used to equip Pic0(E) with a structure of

algebraic curve, and to equip E with a structure of algebraic group.
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2. a) Prove that dim Γ(E,OE(ke)) = k for any k > 0.
b) Write down all the elements of Γ(E,OE(ke)) explicitly in the form P (x) + yQ(x) for

some P,Q ∈ k(x).

3. a) If u + v = w in the sense of the group law of Problem 1 on E, write down the
coordinates of w in terms of coordinates of u, v.

b) Prove that u+ v + w = 0 iff u, v, w lie on a line P1 ⊂ P2.

4. Prove that if u + v = 0, and u (resp. v) has coordinates (x1, y1, 1) (resp. (x2, y2, 1)),
then x1 = x2, y1 = −y2.

5. A point u ∈ E is called an inflection point if the tangent line `u at u has the intersection
order 3 (as opposed to the usual order 2) with E at u (in particular, `u ∩ E = {u}). Prove
that

a) u is an inflection point on E iff u has order 3 in the group law of Problem 1 on E.
b) If a line ` ⊂ P2 passes through two inflection points u1, u2 ∈ E, then the third point of

` ∩ E is an inflection point as well.

Exercises in Algebraic Geometry 15.02.2022

The sole purpose of this home assignment is to demonstrate the artificial difficulties caused
by the absence of cohomology theory.

1. For a divisor D on a smooth projective curve C we define its defect def(D) := deg(D)+
1− dim Γ(C,OC(D)). By definition def(D) depends only on the class of D in Pic(C) (that
is, modulo principal divisors). Prove that

a) If D′ −D is effective, then def(D′) ≥ def(D).
b) There are divisors Dk, k ∈ N, such that deg(Dk) → ∞, but def(Dk) ≤ G for any k

and some constant G.
c) Given a divisor D, for k � 0 we have dim Γ(C,OC(Dk −D)) > 0.
d) For any divisor D, we have def(D) ≤ G.

The minimal constant G in d) is caled the genus g = g(C). For a divisor D we set
h(D) := g − def(D) = dim Γ(C,OC(D)) + g − 1 − deg(D). By definition, h(D) ≥ 0, and
there is a divisor Dmin such that h(Dmin) = 0.

2. Prove that a) for a point c ∈ C and a divisor D we have h(D) ≥ h(D+ c) ≥ h(D)− 1.
b) There is a divisor D0 of degree g − 1 such that h(D0) = 0.
c) Any divisor of degree d ≥ g is equivalent (modulo principal divisors) to an effective

divisor.
d) For any divisor D of degree deg(D) > 2g − 2, we have h(D) = 0.

3. Fix a point c ∈ C. We say that k = 1, 2, 3, . . . is a gap for c if dim Γ(C,OC((k− 1)c)) =
dim Γ(C,OC(kc)).

a) Prove that the number of gaps for c is finite. Compute this number.
b) Prove that C \ {c} is an affine curve.
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4. Let L be an invertible sheaf on C, and let D be an effective divisor with all multiplicities
equal to 1. Then L(D)/L =

⊕
c∈D(OC(c) ⊗ L)|c is a torsion sheaf with global sections

Γ(L, D) =
⊕

c∈D(OC(c)⊗ L)|c. The exact sequence of sheaves

0→ L → L(D)→ L(D)/L → 0

gives rise to 0→ Γ(C,L)→ Γ(C,L(D))→ Γ(L, D). The cokernel of the rightmost morphism
is denoted HD(L). Prove that dimHD(L) = h(L) − h(L(D)) (it is understood that the
function h is defined on Pic(C)). In particular, for deg(D) � 0 we have h(L(D)) = 0, and
dimHD(L) = h(L).

5. If D′ = D + D′′ are all effective multiplicity-free divisors, then we have a canonical
embedding ΓD(L) ↪→ ΓD′(L). Prove that

a) This embedding gives rise to a morphism HD(L)→ HD′(L).
b) The morphism HD(L)→ HD′(L) is always injective.
Now we define H(L) := limDHD(L). So for every (effective multiplicity free ) D we have

an embedding HD(L) ↪→ H(L), and this embedding is an isomorphism for deg(D)� 0.

Exercises in Algebraic Geometry 22.02.2022

1. Let C be a smooth hyperelliptic projective curve with the field of rational functions
k(C) = k(x)[y], where y2 = (x− λ1) · · · (x− λ2g+2), and λ1, . . . , λ2g+2 ∈ k are all distinct.

a) Find the genus of C.
b) Write down an explicit basis in the space Γ(C,ΩC) of regular differential forms on C

(in coordinates x, y).

2. Let Pg−1 be the projectivization of the dual space Γ(C,ΩC)∨. We have the canonical
morphism φ : C → Pg−1 (a point c goes to the hyperplane in the space of global sections
formed by all the sections vanishing at c). Prove that φ decomposes into the 2-fold cover
π : C → P1, (x, y) 7→ x, and the Veronese embedding P1 ↪→ Pg−1.

3. Prove that any curve of genus 1 or 2 is hyperelliptic (i.e. is a double cover of P1).

4. Prove that a) a smooth projective curve C is hyperelliptic iff there is an invertible sheaf
L on C such that degL = 2, and dim Γ(C,L) ≥ 2.

b) If a smooth projective curve X is not hyperelliptic, then the canonical morphism X →
Pg−1 = P(Γ(X,ΩX)∨) is an embedding.

5. Let X ⊂ P2 be a smooth quartic (is cut out by a homogeneous polynomial of degree 4).
Prove that X is not hyperelliptic, and the genus of X is 3.

Exercises in Algebraic Geometry 01.03.2022

1. We assume that the characteristic of k is 0. Let S = Spec(A) be a smooth affine
curve. We have a natural permutation action of the symmetric group Sn y A⊗n. We set
Symn(A) := (A⊗n)Sn (invariants of all permutations), and Symn(S) := Spec(Symn(A)).
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a) Prove that the points of Symn(S) are in natural bijection with the set of effective
divisors of degree n on S.

b) Prove that Symn(S) is smooth.
c) Construct an algebraic variety Symn(C) with similar properties for a smooth projective

curve C.

2. For a smooth projective curve C, we have a natural map

πn : Symn(C)→ Picn(C), (c1, . . . , cn) 7→ OC(c1 + . . .+ cn).

Prove that
a) πn is surjective for n ≥ g (the genus of C).
b) All the fibers of πn are isomorphic to projective spaces Pk (for varying k).
c) All the fibers of πn are of the same dimension for n > 2g − 2.
d) There is an open dense subset U ⊂ Symg(C) such that πg|U is injective.

3. Choose a point c ∈ C and consider

π : Symg(C)→ Pic0(C), (c1, . . . , cg) 7→ OC(c1 + . . .+ cg − gc).
According to the previous problem, π|U is injective. Define a structure of connected algebraic
group on Pic0(C) using the covering by π(U) and its translates.

4. Prove that a) the group Pic0(C) is generated by π(U).
b) The group Pic0(C) is the quotient of the free abelian group Z[π(U)] modulo the (obvi-

ous) relations [u]− [u′]− [u′′] whenever u = u′ + u′′ for u, u′, u′′ ∈ π(U).

5. Since Picn(C) is noncanonically isomorphic to Pic0(C) (a choice of a point L ∈ Picn(C)
gives rise to such an isomorphism since Picn(C) is a principal homogeneous space over the
group Pic0(C)), we obtain a structure of algebraic variety on Picn(C). Prove that the
codifferential d∗πn : T ∗LPicn(C) → T ∗DSymn(C) is injective for any L = OC(D) ∈ Picn(C) for
n > 2g − 2.

Exercises in Algebraic Geometry 08.03.2022

The goal of this and next home assignments is to present an alternative construction of
residues of differentials on curves, due to John Tate.

1. Let V be an (infinite dimensional, possibly) k-vector space (you should keep in mind
a basic example V = k((t)) of Laurent series field). Let Endf (V ) denote the set of finipotent
endomorphisms θ of V : such that for n � 0, the image of θn is finite dimensional. Prove
that there is a unique map TrV : Endf (V )→ k such that

a) If dimV <∞, then TrV is the usual trace.
b) For a vector subspace W ⊂ V and θ ∈ Endf (V ) such that θW ⊂ W , we have TrV (θ) =

TrW (θ) + TrV/W (θ).
c) If θ is nilpotent, TrV (θ) = 0.
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d) For a finipotent linear subspace F ⊂ Endf (V ) (i.e. for n � 0, and any θ1, . . . , θn ∈
F, dim θ1 · · · θnV <∞), the trace TrV : F → k is k-linear.

e) If ϕ : V ′ → V and ψ : V → V ′ are k-linear operators, and ϕψ is finipotent, then ψϕ is
finipotent, and TrV (ϕψ) = TrV ′ψϕ.

2. We say that a subspace A ⊂ V is not much bigger than a subspace B ⊂ V if dim(A+
B)/B <∞; then we write A - B. We say that A,B are about the same size if A - B and
B - A; then we write A ∼ B. You should keep in mind a basic example A = tmk[[t]], B =
tnk[[t]].

Given A ⊂ V we define the following subspaces E,E0, E1, E2 ⊂ End(V ) as follows: θ ∈ E
iff θA - A, and θ ∈ E1 iff θV - A, and θ ∈ E2 iff θA - 0; finally, E0 = E1 ∩E2. Prove that

a) E is a subalgebra of End(V ), and Ei are two-sided ideals in E; they all depend only on
the ∼-equivalence class of A.

b) E1 ∩ E2 = E0, E1 + E2 = E, and E0 is finipotent.
c) Let ϕ ∈ E0, ψ ∈ E. Then [ϕ, ψ] = ϕψ − ψϕ ∈ E0, and TrV [ϕ, ψ] = 0.
d) Let ϕ ∈ E1, ψ ∈ E2. Then [ϕ, ψ] = ϕψ − ψϕ ∈ E0, and TrV [ϕ, ψ] = 0.

3. Let K be a commutative k-algebra (you should keep in mind a basic example K = k((t))
of Laurent series field), V a K-module, and A a k-subspace of V such that fA - A for any
f ∈ K. Hence we have a morphism K → E ⊂ End(V ). Recall that we have a surjective
map c : K ⊗k K � ΩK/k, c(f ⊗ g) = fdg, and Ker(c) is generated over k by elements of the
form f ⊗ gh− fg ⊗ h− fh⊗ g.

Prove that a) there is a unique k-linear residue map ResVA : ΩK/k → k such that for any

f, g ∈ K we have ResVA(fdg) = TrV [f ′, g′], where f ′, g′ ∈ E are endomorphisms such that
f ≡ f ′ (mod E2), g ≡ g′ (mod E2), and either f ′ ∈ E1 or g′ ∈ E1.

b) If we set B = A + gA, C = B ∩ f−1(A) ∩ (fg)−1(A), and π is a k-linear projection of
A+ fA+ fgA onto A, then dim(B/C) <∞, and ResVA(fdg) = TrB/C [πf, g].

4. Prove that a) if V ⊃ V ′ ⊃ A and KV ′ = V ′, then ResVA = ResV
′

A . For this reason we
will often write ResA for ResVA.

b) If A ∼ A′, then ResVA = ResVA′ .
c) If fA + fgA + fg2A ⊂ A, then ResA(fdg) = 0. In particular, ResA ≡ 0 if A is a

K-submodule of V .
d) For g ∈ K and n ∈ N we have ResA(gndg) = 0.
e) If g ∈ K is invertible, then ResA(gndg) = 0 for any n ≤ −2.

5. Prove that a) if g ∈ K is invertible, and for h ∈ K we have hA ⊂ A, then
ResA(hg−1dg) = TrA/(A∩gA)(h)−TrgA/(A∩gA)(h). In particular, if g is invertible, and gA ⊂ A,
then ResA(g−1dg) = dimk(A/gA).

b) For another subspace B ⊂ V such that fB - B for any f ∈ K, we have f(A + B) -
A+B, f(A ∩B) - A ∩B for any f ∈ K, and ResA + ResB = ResA+B + ResA∩B.

c) For a commutative K-algebra K ′ free of finite rank over K, setting V ′ = K ′ ⊗K V and
A′ =

∑
i xi ⊗ A (for some basis {xi} of K ′ over K), the ∼-equivalence class of A′ depends
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only on A, and f ′A′ - A′ for any f ′ ∈ K ′. Furthermore, ResA′(f
′dg) = ResA((TrK′/Kf)dg)

for any f ′ ∈ K ′ and g ∈ K.

Exercises in Algebraic Geometry 15.03.2022

Let X be a smooth projective curve, and K = k(X). For a point p ∈ X we denote

by Ox ⊂ K its local ring, and by Ap = Ôx its completion. Finally, Kp = FracAp is the

completion of K at p. We define the residue Resp : ΩK/k → k by Respfdg := Res
Kp

Ap
(fdg)

(notation of the previous home assignment).

1. Let us choose a uniformizer t ∈ Ap, so that Ap ' k[[t]], and Kp ' k((t)). Let f =∑
n≥−N ant

n, g =
∑

m≥−M bmt
m ∈ Kp. Prove that Respfdg = the coefficient of t−1 in

f(t) d
dt
g(t), that is

∑
n+m=0manbm.

2. Let S be any subset of X. We set O(S) :=
⋂
p∈S Op ⊂ K, AS :=

∏
p∈S Ap, VS :=∏′

p∈SKp (the set of collections (fp ∈ Kp)p∈S such that fp ∈ Ap for almost all p ∈ S). In
particular, we have a diagonal embedding K ⊂ VS.

a) Prove that dim(VS/(K + AS)) <∞; in particular, VX/(K + AX) = H1(X,OX).
b) Prove that ResAS

+ ResK = ResO(S) + ResK+AS
.

c) Let f, g ∈ K, and let S ′ ⊂ S be a finite subset. Set T := S \ S ′. Prove that
ResAS

fdg = ResAT
fdg +

∑
p∈S′ Respfdg.

d) Prove that for ω ∈ ΩK/k, we have
∑

p∈S Respω = ResKO(S)ω.

e) Prove that for ω ∈ ΩK/k, we have
∑

p∈X Respω = 0.

3. Let S ⊂ X be a finite subset. Let F be a locally free coherent sheaf on X.
a) Prove that a collection of principal parts (ωp)p∈S comes from a rational form ω ∈ ΩK/k

regular on X \ S iff
∑

p∈S Respωp = 0.

b) Prove that a collection of principal parts (φp)p∈S comes from a rational section φ ∈
Rat(F) regular on X \ S iff

∑
p∈S Resp〈φp, $〉 = 0 for all $ ∈ Γ(X,F∨ ⊗OX

ΩX).

4. Let π : Y → X be a dominant morphism of smooth projective curves corresponding to
the inclusion of function fields K ⊂ L. Prove that

a) For f ∈ L, g ∈ K, p ∈ X, we have
∑

π(y)=p Resyfdg = Resp((TrL/Kf)dg).

b) For π(y) = p, g ∈ Kp, f ∈ Ly, we have Resyfdg = Resp((TrLy/Kpf)dg).

5. Let X, Y be smooth projective curves, and the genus g(X) > 1. Prove that
a) There are finitely many dominant morphisms from Y to X.
b) The order of the finite group Aut(X) is at most 84(g(X)− 1).

Exercises in Algebraic Geometry 22.03.2022

1. Let k have characteristic 3. Let X ⊂ P2 be the curve cut out by equation x3y + y3z +
z3x = 0. Prove that X is smooth, but any point x ∈ X is an inflection point.
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2. Prove that the dual curve X∨ in the dual projective space is isomorphic to X, and
the Gauß map g : X → X∨ (a point x ∈ X goes to the tangent line to X at x) is purely
inseparable.

3. Prove that the group of automorphisms of X is isomorphic to PSL(2,F7).

4. For a smooth curve C ⊂ P2 of degree d > 1 such that the Gauß map g : C → C∨ is
birational, find the degree of C∨.

5. Let π : E1 → E2 be a homomorphism from an elliptic curve to another elliptic curve
(dominant morphism of degree d). The pullback of invertible sheaves gives rise to a homo-
morphism π∗ : E2 = Pic0(E2)→ Pic0(E1) = E1. Prove that

a) π ◦ π∗ = d (multiplication by d in the group E2).
b) If E1 = E2, and π = c (multiplication by c in the group E1), then π∗ = c as well.
c) π∗1 ◦ π∗2 = (π2 ◦ π1)∗.
d) (π∗)∗ = π.
e) (π +$)∗ = π∗ +$∗, if π +$ 6= 0.

Exercises in Algebraic Geometry 29.03.2022

1. Let Q ⊂ P3 be a smooth quadric, isomorphic to P1 × P1 (Segre embedding). Prove
that Pic(Q) = Z⊕ Z, that is any line bundle on Q is isomorphic to OQ(a, b) = pr∗1OP1(a)⊗
pr∗2OP1(b), and any divisor is of type (a, b).

2. Prove that a) if |a− b| ≤ 1, then H1(Q,OQ(a, b)) = 0.
b) If a, b < 0, then H1(Q,OQ(a, b)) = 0.
c) If a ≤ −2, then H1(Q,OQ(a, 0)) 6= 0.
d) Any effective divisor of type (a, b) for a, b > 0 is connected.

3. Prove that for any a, b > 0 there is a smooth connected curve X ⊂ Q of type (a, b).

4. Prove that g(X) = ab− a− b+ 1. In particular, if (a, b) = (g + 1, 2), we get a smooth
connected curve X of genus g.

5. Prove that the above curve X ⊂ Q is projectively normal (i.e. the restriction map from
the homogeneous coordinate ring of P3 to the homogeneous coordinate ring of X ⊂ P3 is
surjective) iff |a− b| ≤ 1. In particular a smooth connected curve X of type (1, 3) (rational
curve of degree 4 in P3) is not projectively normal.

Exercises in Algebraic Geometry 05.04.2022

1. Let X be a smooth projective curve of genus g over k = Fq, defined over Fq. Let
Nr be the number of points of X, rational over Fqr . Let |X| be the set of Fr-orbits in X,
and for x ∈ |X| let deg(x) be the cardinality of the orbit. We define the zeta-function
ζX(s) = Z(X; t = q−s) as

∏
x∈|X|(1− tdeg(x))−1. Prove that

a) Z(X; t) = exp(
∑∞

r=1Nrt
r/r).
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b) Z(X; t) =
∑

D t
degD, where the sum runs over all the effective divisors on X defined

over Fq, that is over the positive linear combinations of Fr-orbit sums in |X|.

2. Prove that a) for a given effective divisor D defined over Fq, the number of all the

effective divisors defined over Fq and linearly equivalent to D equals (qh
0(D) − 1)/(q − 1),

where h0(D) := dimH0(X,OX(D)).
b) The number of linear equivalence classes of degree 0 divisors on X defined over Fq is

finite. It is denoted h.
c) It is known that there is a divisor of degree 1 defined over Fq (you can try to prove this

fact, but it is not trivial). Deduce that the number of linear equivalence classes of degree n
divisors on X defined over Fq is equal to h for any degree n.

3. Grouping the summands in Problem 1b) by the linear equivalence classes (and re-
calling that for degD > 2g − 2 we have h0(D) = degD + 1 − g), prove that Z(X; t) =
P1(t)P0(t)

−1P2(t)
−1, where P0(t) = 1− t, P2(t) = 1− qt, P1(t) =

∏2g
i=1(1− αit).

4. Deduce from the Serre duality that Z(X; (qt)−1) = q1−gt2−2gZ(X; t).

5. a) In notation of Problem 1, apply the Castelnuovo-Severi inequality to the graphs of
the identity morphism Id: X → X and of the Frobenius morphism Frr : X → X and deduce
Nr = 1− ar + qr for |ar| ≤ 2g

√
qr.

b) In notation of Problem 3, prove ar =
∑2g

i=1 α
r
i .

c) Prove that the condition ar ≤ 2g
√
qr ∀r is equivalent to the condition |αi| ≤

√
q ∀i.

d) Prove that |αi| =
√
q ∀i (Riemann hypothesis for the curve X).
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1. Let X be a smooth projective irreducible surface. Recall that for L,M ∈ Pic(X) we
set

[L,M] := χ(OX)− χ(L−1)− χ(M−1) + χ(L−1 ⊗M−1).

We consider the quadratic form Q(M) := [M,M] on Pic(X). Prove that
a) If X = C×S, then N(M) := χC(M)χS(M)−χX(M) = −1

2
Q(M)+degCM·degSM.

b) Q(M) = 2 lim
n→∞

(χ(M⊗n)/n2).

2. Fix a very ample line bundle L ∈ Pic(X). For M ∈ Pic(X) we set d(M) := [L,M].
Prove that if d(M) < 0, then Γ(X,M) = 0.

3. Choose a section σ ∈ Γ(X,L) such that its zero divisor D is a smooth curve (perhaps
disconnected). Prove that

a) For anyM∈ Pic(X), we have dim Γ(X,M) ≤ dim Γ(X,M(−D)) + max(d(M), 0) + c
for a constant c.

b) There is a function Φ(n) on Z such that for anyM∈ Pic(X) we have dim Γ(X,M) ≤
Φ(d(M)).
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4. Deduce from the Serre duality on X (perfect pairing between H2−i(X,ωX ⊗M−1) and
H i(X,M)), that there is a function Ψ(n) on Z such that for any M ∈ Pic(X) we have
dimH2(X,M) ≤ Ψ(d(M)).

5. Take M∈ Pic(X) with d(M) = 0. Prove that
a) χ(M⊗n) is bounded from above.
b) χ(M⊗n) = 1

2
n2Q(M) plus a linear function in n.

c) Q(L) > 0.
d) If d(M) = 0, then Q(M) ≤ 0 (Hodge index theorem).
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1. Let m ∈ Z. A coherent sheaf F on Pn is called m-regular if H i(Pn,F(m− i)) = 0 for
any i > 0.

a) Find all m such that OPn(r) is m-regular.
b) Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of coherent sheaves on Pn. Prove

that if F ′,F ′′ are both m-regular, then F is m-regular as well.
c) Prove that if F ′ is (m+ 1)-regular, and F is m-regular, then F ′′ is m-regular.
d) Prove that if F ′′ is (m− 1)-regular, and F is m-regular, then F ′ is m-regular.
e) Let S0

F ⊂ Pn be the union of supports of all the sky-scraper subsheaves of F (so that S0
F

is a finite subset of Pn). Let S1
F be the (finite) set of curves in Pn equal to the 1-dimensional

supports of subsheaves of F . We define S2
F , . . . , S

n−1
F similarly, and SF := S0

F ∪ . . . ∪ Sn−1F
(it is not a subvariety of Pn, but a collection of closed subvarieties). Assume a hyperlane
H ⊂ Pn does not contain any closed subvariety in SF . Prove that if F is m-regular, then
the restriction F|H is also m-regular.

2. Assume a hyperplane H ⊂ Pn does not contain any closed subset in SF . Prove
TorOPn

1 (OH ,F) = 0.

3. Let F be an m-regular coherent sheaf on Pn. Prove that F is k-regular for any k ≥ m.

4. Prove that the natural map Γ(Pn,OPn(1))⊗Γ(Pn,F(r))→ Γ(Pn,F(r+1)) is surjective
for any r ≥ m.

5. a) Assume that the restriction F|H to a hyperplane H ⊂ Pn is r-regular, and the
restriction morphism Γ(Pn,F(r)) → Γ(H,F(r)|H) is surjective. Prove that the restriction
morphism Γ(Pn,F(r + 1))→ Γ(H,F(r + 1)|H) is surjective as well.

b) Prove that if F is m-regular, then F(r) is generated by its global sections, and
H>0(Pn,F(r)) = 0 for any r ≥ m.

Exercises in Algebraic Geometry 26.04.2022

1. Let S = k[x1, . . . , xn], and let Λ• = Λ•〈ε1, . . . , εn〉 be the exterior algebra on n gen-
erators. We consider the Koszul complex K• = S ⊗ Λ•+n living in cohomological degrees
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−n, . . . , 0. It has many equivalent definitions; choose your favorite one. For instance, it
is the n-th tensor power of the complex k[x]

x→ k[x] living in cohomological degrees −1, 0.
Prove that its cohomology is k in degree 0, i.e. it gives a length n free resolution of the
augmentation S-module k.

2. We say that a complex M• of graded S-modules is minimal if all the differentials in
M•⊗S k are zero. For instance, the Koszul complex is minimal. Prove that a free resolution

. . .
d−2−→M−1 d−1−→M0 of a graded S-module H0 := Coker(d−1) is minimal iff for any i < 0, a

basis of M i+1 projects to some minimal collection of generators of Coker(di).

3. We define the projective dimension pdim(H) of a finitely generated graded S-module
H as the minimal length of a projective resolution of H. Prove that pdim(H) equals the
length of any minimal free resolution of H.

4. Prove that pdim(H) is the minimal ` ∈ N such that TorS`+1(k, H) = 0. In particular,
any finitely generated graded S-module H admits a free resolution of length at most n (since
you may compute Tor via the Koszul resolution of k).

5. Prove that a) any coherent sheaf F on Pn admits a resolution

0→M−n−1 → . . .→M0 → F → 0

such that any Mi is a direct sum of invertible sheaves.
b) Any coherent sheaf F on Pn admits a resolution

0→M−n → . . .→M0 → F → 0

such that any Mi is a locally free sheaf.
c) The Euler characteristic χ(F(r)) is a polynomial in r (the Hilbert polynomial).
d) This Hilbert polynomial coincides with PM of Problem 3 of December 02, 2021, where

M is a graded k[x0, . . . , xn]-module corresponding to F .
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1. Consider the rational morphism

φ : P2 99K P4, (x0 : x1 : x2) 7→ (x0x1 : x0x2 : x21 : x1x2 : x22).

Prove that φ is birational isomorphism onto the image closure Y ⊂ P4, and the inverse
rational morphism φ−1 : Y 99K P2 is actually regular, and is nothing but the blowup of P2

at the point (1 : 0 : 0).

2. Let ψ : Q 99K H be the stereographic projection of a smooth quadric Q ⊂ P3 from a
point q ∈ Q to a hyperplane H ' P2 ⊂ P3. Decompose ψ = ϕ ◦ φ−1 for regular morphisms

Q
φ←− X

ϕ−→ H,

where φ and ϕ are blowups (perhaps at several points).
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3. Let x, y ∈ L ⊂ P2 be two distinct points of a projective line. Let Z be the blowup of

P2 at x, y. Let L̃ ⊂ Z be the strict transform of L (the irreducible curve equal to the closure
of the preimage of L \ {x, y}).

a) Prove that the self-intersection index I(E,E) for any exceptional divisor E ' P1 ⊂ Z
(defined e.g. as [OZ(E),OZ(E)], notation of Problem 1 of April 12) is −1.

b) Prove that the self-intersection index I(L̃, L̃) is −1.

c) By Castelnuovo theorem, L̃ ⊂ Z can be blown down. Describe explicitly the surface W
obtained by this blow-down.

4. Let π : X̃ → X be the blowup of a smooth irreducible projective surface X at a point

x ∈ X, and let E = π−1(x) ⊂ X̃ be the exceptional divisor. Recall that the intersection

index E · E := [OX̃(E),OX̃(E)] = −1. We have the homomorphisms π∗ : Pic(X)→ Pic(X̃)

and Z→ Pic(X̃), a 7→ OX̃(aE). Prove that

a) These homomorphisms give rise to Pic(X̃) ' Pic(X)⊕ Z.
b) [π∗L, π∗M] = [L,M] for any L,M∈ Pic(X).
c) [π∗L,OX̃(E)] = 0 for any L ∈ Pic(X).

d) [π∗L,N ] = [L, π∗N ] for any L ∈ Pic(X), N ∈ Pic(X̃), where π∗N stands for the

projection to the direct summand Pic(X) of Pic(X̃).

5. Prove that a) ωX̃ ' π∗ωX ⊗OX̃(E).
b) [ωX̃ , ωX̃ ] = [ωX , ωX ]− 1.

Exercises in Algebraic Geometry 10.05.2022

1. For an effective divisor D ⊂ X, the linear system |D| is the set of all effective divisors
linearly equivalent to D (i.e. zero divisors of sections σ ∈ Γ(X,OX(D))). Given points
P1, . . . , Pr ∈ X, the linear subsystem |D−P1− . . .−Pr| with prescribed base points is formed
by the zero divisors of all the sections σ ∈ Γ(X,OX(D)) vanishing at P1, . . . , Pr. If all the
divisors in |D − P1 − . . . − Pr| contain a common point P ∈ X, then this P is called a
non-prescribed base point of the linear system |D − P1 − . . .− Pr|.

Consider points P1, . . . , Pr ∈ P2 such that no 3 of them are collinear. Prove that the
linear system of conics (i.e. zero divisors of sections of OP2(2)) with presribed base points
P1, . . . , Pr has no non-prescribed base points if r ≤ 4.

2. Prove that a) the dimension of the linear system of conics with prescribed base points
P1, . . . , Pr equals 5− r for any r ≤ 5.

b) There exists a unique conic passing through P1, . . . , P5 (recall that no 3 points are
collinear), and this conic is necessarily irreducible.

3. Consider distinct points P1, . . . , Pr ∈ P2 such that no 4 of them are collinear and no 7
of them lie on a common conic. Prove that the linear system of cubics (i.e. zero divisors of



26

sections of OP2(3)) with presribed base points P1, . . . , Pr has no non-prescribed base points
if r ≤ 7.

4. Prove that a) the dimension of the linear system of cubics with prescribed base points
P1, . . . , Pr equals 9− r for any r ≤ 8.

b) There is a 1-dimensional linear system of cubics passing through P1, . . . , P8, and all but
finitely many cubics in this linear system are irreducible.

5. Prove that for distinct points P1, . . . , P8 ∈ P2 (such that no 4 of them are collinear and
no 7 of them lie on a common conic) there is a unique point P9 such that any cubic curve
passing through P1, . . . , P8 contains P9.
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1. Consider points P1, . . . , Pr ∈ P2 such that no 3 of them are collinear and no 6 of them
lie on a common conic. The linear system of cubics with prescribed base points P1, . . . , Pr
is in a natural bijection with the linear system |π∗OP2(3) − E1 − . . . − Er| on the blowup

P̃2 π→ P2 at P1, . . . , Pr; namely, P2 ⊃ D 7→ π−1(D)−E1− . . .−Er, where E1, . . . , Er are the
exceptional divisors. Prove that the latter linear system is very ample if r ≤ 6.

To this end, you will have to apply the criterion of very ampleness. The infinitesimal
condition in this criterion has to be reformulated as follows: for any point P ∈ Ei (infinitesi-
mally close to Pi), the latter linear system with prescribed base point P has no non-presribed
base points.

2. Prove that a) P̃2 embeds into P9−r as a surface of degree d = 9− r (del Pezzo surface).

b) The dualizing sheaf ωP̃2 ' OP̃2(−1). In particular, for r = 6, P̃2 is a smooth cubic
hypersurface in P3. Counting the parameters and comparing with Problem 4c) of Decem-
ber 16th, we conclude that a general cubic surface in P3 is obtained as the blowup of P2 at 6
points. In fact, this is true for any smooth cubic surface in P3.

3. We fix 6 distinct points P1, . . . , P6 ∈ P2 not lying on a common conic, such that no 3
are collinear. We denote by X ⊂ P3 the blowup of P2 at these points, and we denote by
E1, . . . , E6 ⊂ X the exceptional divisors. We fix a line L ⊂ P2 not passing through any of
Pi, and keep the name L ⊂ X for its preimage in X. Prove that

a) Pic(X) = Z7 is generated by OX(E1), . . . ,OX(E6),OX(L).
b) [OX(Ei),OX(Ei)] = −1, [OX(Ei),OX(Ej)] = 0 = [OX(Ei),OX(L)], [OX(L),OX(L)] =

1 for any i 6= j.
c) OX(1) ' OX(3L− E1 − . . .− E6).
d) ωX ' OX(−1).

4. Let D ⊂ X be an effective divisor such that OX(D) ' OX(aL−
∑6

i=1 biEi). Prove that

a) The degree of D is d = 3a−
∑6

i=1 bi.

b) [OX(D),OX(D)] = a2 −
∑6

i=1 b
2
i .
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c) The arithmetic genus pa(D) = 1
2
[OX(D),OX(D)] − 1

2
d + 1 = 1

2
(a − 1)(a − 2) −

1
2

∑6
i=1 bi(bi − 1).

5. Prove that a) X contains exactly 27 lines P1 ⊂ X ⊂ P3. Namely,
i) The exceptional divisors E1, . . . , E6;
ii) The strict transforms Fij of the lines in P2 through Pi and Pj;
iii) The strict transforms Gi of conics Ci ⊂ P2 passing through a quintuple of our points.
b) For any line L of those 27 lines, we have [OX(L),OX(L)] = −1.
c) Any irreducible curve D ⊂ X such that [OX(D),OX(D)] < 0 is one of those 27 lines.
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1. a) Find the explicit equations of the lines Ei, Fij, Gi, 1 ≤ i 6= j ≤ 6, on the Fermat
cubic surface cut out by the equation x30 + x31 + x32 + x33 = 0.

b) Check that Ei∩Ej = ∅, Gi∩Gj = ∅ for i 6= j; furthermore, Ei∩Fjk = ∅, Gi∩Fjk = ∅
iff j 6= i 6= k; furthermore, Ei ∩Gj = ∅ iff i = j; finally, Fij ∩ Fkl = ∅ iff {i, j} ∩ {k, l} 6= ∅.

2. Let C be an irreducible cubic curve in P2. Let a line L (resp. L′) intersect C in the
points P,Q,R (resp. P ′, Q′, R′). Let P ′′ (resp. Q′′, R′′) be the third point of the intersection
of the line through P, P ′ (resp. through Q,Q′ and R,R′) with C. Prove that P ′′, Q′′, R′′ lie
on a common line.

3. Let P0 be an inflection point of C. We define the following group operation on the set
of smooth points of C: given smooth points P,Q ∈ C, we define R ∈ C as the third point
of the intersection of C with the line through P,Q, and then we define T ∈ C as the third
point of the intersection of C with the line through P0, R. We set P +Q := T . Deduce from
the previous problem that this operation is associative.

4. Prove the famous Pascal theorem: Let A,B,C,A′, B′, C ′ be a sextuple of points on a
smooth conic in P2. Let P (resp. Q,R) be the intersection of the lines through A,B′ and
A′, B (resp. through A,C ′ and A′, C; through B,C ′ and B′, C). Prove that P,Q,R lie on a
common line.

5. Fix points P1, . . . , P13 in P2 in general position.
a) Prove that there are P14, P15, P16 such that any quartic containing P1, . . . , P13 necessarily

contains P14, P15, P16 as well.
b) Formulate explicitly the “general position” condition (like no 4 points are collinear,

etc.)

Exercises in Algebraic Geometry 31.05.2022

1. For a smooth irreducible algebraic variety X we set Ωi
X := ΛiΩX (higher order differ-

ential forms). In particular, ΩdimX
X = ωX is the dualizing sheaf. Prove that dim Γ(X,Ωi

X) is
a birational invariant of X, i.e. if projective varieties X and Y are birationally isomorphic,



28

then dim Γ(X,Ωi
X) = dim Γ(Y,Ωi

Y ) (you may use the Hartogs theorem and the theorem
about extension through the generic points of divisors).

2. Prove that a smooth hypersurface X ⊂ Pn of degree d > n is not rational (i.e. is not
birationally isomorphic to Pn−1).

3. Let A ⊂ B be noetherian rings without zero divisors such that B is a finitely generated
A-algebra. Let 0 6= b ∈ B. Prove that there is 0 6= a ∈ A such that any homomorphism
ψ : A→ K (an algebraically closed field) with ψ(a) 6= 0 can be extended to a homomorphism

ψ̃ : B → K with ψ̃(b) 6= 0.

4. Prove that for a dominant finite type morphism π : Spec(B) → Spec(A) between
integral affine noetherian schemes, the image π(Spec(B)) contains a dense open subset U ⊂
Spec(A).

5. A constructible subset of a scheme is a finite union of locally closed subsets. For
example, the image of π : A2 → A2, (x, y) 7→ (x, xy) is a constructible subset of A2, but
not a locally closed one. Let π : X → Y be a finite type morphism of noetherian schemes,
and let S ⊂ X be a constructible subset. Prove that π(S) is a constructible subset of Y
(Chevalley theorem).


