9 Лекция 9. Решение линейных уравнений высших порядков с постоянными коэффициентами

Этот текст содержит материал лекции 9 и часть лекции 10.

9.1 Операторная символика

Мы переходим к случаю, когда линейное уравнение порядка n удаётся полностью решить — случаю постоянных коэффициентов.

Рассмотрим уравнение вида

$$a_n x^{(n)} + a_{n-1} x^{(n-1)} + \dots + a_0 x = 0,$$
 (1)

где a_j — константы. Любое решение уравнения — линейная комбинация фундаментальной системы решений.

Мы будем искать решения уравнения (1) в виде $x(t)=e^{\lambda t}$. Для начала введем операторную символику.

Пусть $p:=\frac{d}{dt}$ — отображение пространства функций в себя, которое определено для дифференцируемых функций и каждой функции ставит в соответствие её производную: $pf=f'=\dot{f}$. Отображение, область определения и область значений которого — некоторые пространства функций, часто называют *оператором*. Пусть p^n — это оператор p, применённый p_n раз: $p^n = f^n$. Для любого многочлена $M(z) = m_n z^n + m_{n-1} z^{n-1} + \ldots + m_0$ с вещественными коэффициентами положим

$$M(p) := m_n p^n + m_{n-1} p^{n-1} + \ldots + m_0.$$

Эта формула определяет дифференциальный оператор с постоянными коэффициентами M(p). Запись вида M(p)x(t) означает результат применения дифференциального оператора M(p) к функции x(t).

Заметим, что уравнение (1) можно записать в виде L(p)x(t)=0, где $L(z):=z^n+a_{n-1}z^{n-1}+\ldots+a_0$.

Определение 1 *Многочлен* $L(z) = z^n + a_{n-1}z^{n-1} + \ldots + a_0$ *называется* характеристическим многочленом *уравнения* (1).

Выясним, как оператор M(p) действует на экспоненту $e^{\lambda t}$.

Лемма 1 Для любого многочлена М выполнено равенство

$$M(p)e^{\lambda t} = M(\lambda)e^{\lambda t}. (2)$$

Доказательство Сначала проверим это равенство для всех одночленов $M(p) = p^k$:

$$p^k e^{\lambda t} = (e^{\lambda t})^{(k)} = \lambda^k e^{\lambda t} = M(\lambda)e^{\lambda t}.$$

Так как обе части равенства (2) линейны по M, утверждение выполнено и для любой линейной комбинации одночленов, то есть для любого многочлена.

В частности, если λ — корень характеристического многочлена L(z), то $L(p)e^{\lambda t}=0$. Но условие L(p)x(t)=0 — это и есть уравнение (1)! Значит, функция $x(t)=e^{\lambda t}$ является решением уравнения (1).

9.2 ФСР: простейший случай

Это соображение позволяет найти фундаментальную систему решений в случае, когда характеристический многочлен L(z) имеет n различных вещественных корней $\lambda_1, \lambda_2, \ldots, \lambda_n$.

Предложение 1 Пусть характеристический многочлен L(z) имеет n различных вещественных корней $\lambda_1, \lambda_2, \ldots, \lambda_n$. Тогда система решений $e^{\lambda_1 t}, e^{\lambda_2 t}, \ldots, e^{\lambda_n t}$ будет фундаментальной для уравнения (1).

Доказательство Из предыдущей леммы следует, что функции $e^{\lambda_j t}$ будут решениями уравнения (1). Осталось проверить, что они линейно независимы.

Лемма 2 Если числа $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ различны, то функции $e^{\lambda_1 t}, \ldots, e^{\lambda_n t}$ линейно независимы над \mathbb{R} .

Доказательство [Доказательство с помощью метода "деления с дифференцированием".]

Утверждение докажем индукцией по n. База n=1 очевидна. Пусть утверждение верно для любого набора из n-1 различных чисел $\lambda_1 \dots \lambda_{n-1}$. Пусть

$$\alpha_1 e^{\lambda_1 t} + \ldots + \alpha_n e^{\lambda_n t} \equiv 0. \tag{3}$$

Разделим это равенство на $e^{\lambda_n t}$ и продифференцируем. Получим:

$$\sum_{k=1}^{n-1} \alpha_k (\lambda_k - \lambda_n) e^{(\lambda_k - \lambda_n)t} \equiv 0$$

В силу предположения индукции, $\alpha_1 = \alpha_2 = \cdots = \alpha_{n-1} = 0$. Тогда из равенства (3) следует, что $\alpha_n = 0$. Итак, из равенства (3) следует, что все числа α_j нулевые. Значит, функции $e^{\lambda_1 t}, \ldots, e^{\lambda_n t}$ линейно независимы над \mathbb{R} .

9.3 Случай попарно различных комплексных корней характеристического многочлена

В этом случае нам придется работать с комплексно-значными функциями. Для этого понадобятся следующие определения.

Определение 2 Пусть $f: \mathbb{R} \to \mathbb{C}$ — комплексно-значная функция. Производной функции f называется функция

$$f'(t) = \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

(если такой предел существует).

Определение 3 Комплексная экспонента — это сумма комплексного степенного $p n \partial a \ e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}.$

Для комплексных экспонент верна знаменитая формула Эйлера:

$$e^{(x+iy)} = e^x(\cos y + i\sin y).$$

Её геометрическое доказательство будет рассказано позже.

Эти определения позволяют разобраться со случаем, когда характеристический многочлен L(z) имеет n различных комплексных корней.

Предложение 2 Пусть характеристический многочлен L(z) имеет n различных комплексных корней $\lambda_1, \ \lambda_2, \ldots, \ \lambda_n$. Тогда комплексно-значные функции $e^{\lambda_1 t}, \ e^{\lambda_2 t}, \ldots, \ e^{\lambda_n t}$ являются независимыми над $\mathbb C$ решениями уравнения (1).

Определение линейной независимости функций над $\mathbb C$ полностью аналогично вещественному.

Доказательство дословно повторяет доказательство предложения 1: функции $e^{\lambda t}$ удовлетворяют дифференциальному уравнению (1), если производные считать в смысле предыдущего определения, и оказываются линейно независимыми над \mathbb{C} . Но нас интересуют вещественные фундаментальные системы решений, поэтому система решений $e^{\lambda t}$ будет замнена везесьвенной.

Заметим, что многочлен L(z) имеет вещественные коэффициенты. Значит, если $L(\lambda)=0$, то $L(\bar{\lambda})=\overline{L(\lambda)}=0$. Поэтому все невещественные корни многочлена L разбиваются на пары комплексно сопряжённых. То есть его корни имеют следующий вид:

$$\{\lambda_k\}_{k=1}^l \bigcup \{\mu_k \pm i\nu_k\}_{k=1}^r,$$

где μ_k, ν_k и λ_k вещественны и 2r + l = n.

Предложение 3 Пусть характеристический многочлен уравнения (1) имеет различные корни: l вещественных, $\lambda_k, 1 \le k \le l$, u r пар комплексно сопряженных: $\mu_s \pm i\nu_s, 1 \le s \le r; n = k + 2r$. Тогда функции

$$e^{\lambda_k t}, k \le l \qquad e^{\mu_s t} \cos \nu_s t, \quad e^{\mu_s t} \sin \nu_s t, s \le r$$
 (4)

образуют фундаментальную систему решений уравнения (1) над \mathbb{R} .

Доказательство Предложение 2 показывает, что функции

$$e^{\lambda_k t}, k \le l, \qquad e^{(\mu_s \pm i\nu_s)t}, s \le r,$$
 (5)

являются линейно независимыми (над \mathbb{C}) решениями уравнения (1). Так как этот набор состоит из n функций, эти функции образуют базис в n-мерном пространстве решений уравнения (1), то есть фундаментальную систему решений. По формуле Эйлера,

$$e^{\mu_s t} \cos \nu_s t = \frac{1}{2} (e^{(\mu_s + i\nu_s)t} + e^{(\mu_s - i\nu_s)t}), \qquad e^{\mu_s t} \sin \nu_s t = \frac{1}{2i} (e^{(\mu_s + i\nu_s)t} - e^{(\mu_s - i\nu_s)t}).$$
 (6)

Поэтому система из n функций (4) отличается от базиса (5) невырожденной линейной заменой. Значит, набор вещественных функций (4) тоже является базисом в пространстве решений уравнения (1), то есть фундаментальной системой решений.

Пример 1 Возъмём уравнение $\ddot{x} = 0$. У его характеристического многочлена z^2 есть кратный корень 0. Решением уравнения является, кроме функции $\varphi_1(t) = e^{0 \cdot t} \equiv 1$, функция $\varphi_2(t) = te^{0 \cdot t} = t$.

9.4 Формула сдвига

Лемма 3 (Формула сдвига) Для любого многочлена L и для любой достаточно гладкой функции f выполнено равенство

$$L(p) (f(t)e^{\lambda t}) = e^{\lambda t}L(p+\lambda)f(t).$$

Левая часть равенства — результат применения дифференциального оператора L(p) к функции $f(t)e^{\lambda t}$; правая часть — произведение экспоненты на результат применения дифференциального оператора $L(p+\lambda)$ к функции f(t). Доказательство Заметим, что формула сдвига линейна по L. Поэтому её достаточно доказать для многочленов вида $L(z)=z^k$. Это утверждение мы докажем индукцией по k; функция f предполагается C^k -гладкой. Для k=0 утверждение тривиально.

База индукции: $k=1,\ L(z)=z$. Получаем $p\left(f(t)e^{\lambda t}\right)=(f(t)e^{\lambda t})'=e^{\lambda t}(f'(t)+\lambda f(t))=e^{\lambda t}(p+\lambda)f(t),$ что и требовалось.

Шаг индукции. Пусть утверждение для $L(p)=p^k$ уже доказано. Тогда для $L(p)=p^{k+1}$ получаем:

$$p^{k+1}(fe^{\lambda t}) = p^k(e^{\lambda t}(p+\lambda)f(t)) = e^{\lambda t}(p+\lambda)^k(p+\lambda)f(t) = e^{\lambda t}(p+\lambda)^{k+1}f(t).$$

В первом равенстве мы воспользовались утверждением базы индукции, во втором — предположением индукции. \Box

9.5 Общий случай

Следующее предложение позволяет найти k решений уравнения (1), соответствующих корню характеристического многочлена кратности k.

Предложение 4 Пусть λ — корень характеристического многочлена, имеющий кратность k. Тогда функции

$$e^{\lambda t}$$
, $te^{\lambda t}$, ..., $t^{k-1}e^{\lambda t}$

являются решениями уравнения (1).

Доказательство Так как λ — корень кратности k, то $L(z) = M(z)(z-\lambda)^k$ для некоторого многочлена M. Применим формулу сдвига. Для $r \leq k-1$

$$L(p)(t^r e^{\lambda t}) = e^{\lambda t} L(p+\lambda)t^r = e^{\lambda t} M(p+\lambda)p^k(t^r) = 0,$$

так как $p^k(t^r) = (t^r)^{(k)} = 0$. Это и значит, что функция $t^r e^{\lambda t}$ удовлетворяет дифференциальному уравнению (1).

Применяя это предложение для всех (простых и кратных) корней характеристического многочлена, мы найдем n независимых комплексных решений уравнения — комплексную фундаментальную систему решений. Следующее предложение позволяет находить вещественную фундаментальную систему решений для уравнения (1) с вещественными коэффициентами.

Предложение 5 Пусть характеристический многочлен уравнения (1) имеет комплексные корни $\mu_s \pm i\nu_s$ кратностей K_s , $s \le r$, и вещественные корни $\lambda_m, m \le l$, кратностей K'_m . Тогда функции

$$t^k e^{\mu_s t} \cos(\nu_s t), \qquad k < K_s, s \le r, \tag{7}$$

$$t^k e^{\mu_s t} \sin(\nu_s t), \qquad k < K_s, s \le r, \tag{8}$$

$$t^k e^{\lambda_m t} \qquad k < K'_m, m \le l \tag{9}$$

образуют фундаментальную систему решений для уравнения (1).

Доказательство Заметим, что суммарное количество этих функций равно $2\sum K_s + \sum K'_m$, то есть сумме кратностей всех корней многочлена L. По основной теореме алгебры, эта величина равна n — степени многочлена L. Итак, в системе n функций.

Все функции вида $t^k e^{\lambda_m t}$ и $t^k e^{(\mu_s \pm i\nu_s)t}$ являются решениями уравнения в силу предыдущего предложения. Равенство (6) показывает, что функции (7), (8) тоже являются решениями уравнения. Осталось доказать, что наша система функций линейно независима.

Так как функции (7) и (8) являются линейными комбинациями функций $t^k e^{(\mu_s \pm i\nu_s)t}$, достаточно доказать следующую лемму.

Пемма 4 Для любых попарно различных комплексных чисел λ_j система функций

$$e^{\lambda_1 t}, t e^{\lambda_1 t}, \dots, t^{k_1} e^{\lambda_1 t};$$

$$e^{\lambda_2 t}, t e^{\lambda_2 t}, \dots, t^{k_2} e^{\lambda_2 t};$$

$$\dots$$

$$e^{\lambda_n t}, t e^{\lambda_n t}, \dots, t^{k_n} e^{\lambda_n t}$$

$$(10)$$

линейно независима над \mathbb{C} .

Лемма доказывается с помощью метода "деления с дифференцированием". **Доказательство** Доказательство проводится индукцией по n.

База индукции: n=1. Линейная независимость функций $e^{\lambda_1 t}, te^{\lambda_1 t}, t^2 e^{\lambda_1 t}, \dots$ следует из линейной независимости мономов $1, t, \dots, t^m$.

Шаг индукции. Предположим противное, тогда линейная комбинация следующего вида равна нулю:

$$e^{\lambda_1 t} P_1(t) + \dots + e^{\lambda_n t} P_n(t) \equiv 0,$$

где P_i — некоторые многочлены.

Разделим это выражение на $e^{\lambda_n t}$ и будем дифференцировать, пока последнее слагаемое — многочлен $P_n(t)$ — не превратится в ноль. Выражение примет вид

$$(e^{(\lambda_1 - \lambda_n)t} P_1(t))^{(k)} + (e^{(\lambda_2 - \lambda_n)t} P_2(t))^{(k)} + \dots + 0 \equiv 0,$$

где $k = \deg P_n$. В левой части стоит комбинация (n-1) выражений вида $e^{\mu_j t} Q_j(t)$. Каждое такое выражение не равно нулю: k-я производная функции может быть равна нулю только тогда, когда функция — многочлен.

Мы получили нетривиальную линейную комбинацию n-1 выражений вида $e^{\mu_j t}Q_j(t)$, равную нулю. Это противоречит предположению индукции.