Листок 1

Срок сдачи: 7 февраля.

Задача 1 Рассмотрим задачу Коши для бездисперсного уравнения КдФ:

$$u_t = 6uu_x$$
$$u(0, x) = u_0(x)$$

Показать, что она решается посредством равенства

$$u(t,x) = u_0(s(t,x)),$$

где $u_0(x)$ – начальное данное, а функция s(t,x) задается равенством

$$s = x + 6tu_0(s).$$

Задача 2 Доказать, что условие $\mathcal{L}_t = [\mathcal{L}, \mathcal{A}]$ на пару дифференциальных операторов $\mathcal{L} = -\partial_x^2 + u$, $\mathcal{A} = 4\partial_x^3 - 6u\partial_x - 3u_x$, эквивалентно уравнению $K\partial\Phi$: $u_t - 6uu_x + u_{xxx} = 0$.

Задача 3 Показать, что задача Коши

$$u_t = 6uu_x$$
$$u(0, x) = u_0(x)$$

для бездисперсного уравнения $K\partial\Phi$ $u_t=6uu_x$ решается посредством равенства $u(t,x)=u_0(s(t,x))$, where $s=x+6tu_0(s)$ and $u_0(x)$ are initial data.

Задача 4 Доказать, что условие $\mathcal{L}_t = [\mathcal{L}, \mathcal{A}]$, где

$$\mathcal{L} = -\partial_x^2 + u,$$

$$\mathcal{A} = 4\partial_x^3 - 6u\partial_x - 3u_x,$$

эквивалентно

$$u_t - 6uu_x + u_{xxx} = 0.$$