1 Лекция 1. Ход лучей

Учебник, раздел 3.2.5

Первые интегралы

Учебник, разделы 4.3.1 - 4.3.4

2 Лекция 2. Законы Кеплера

Приводимый ниже вывод законов Кеплера основан на тексте учебника, но написан короче.

Уравнение движения планеты вокруг Солнца (и та и другое считаются материальными точками, Солнце расположено в начале кординат) имеет вид

$$\ddot{x} = -k\frac{e_r}{r^2} \tag{1}$$

где $e_r = \frac{x}{|x|}, \ r = |x|.$

2.1 Закон сосхранения момента имппульса и второй закон Кеплера

Предложение 1 Импульс $[x,\dot{x}]$ является первым интегралом уравнения (1).

Доказательство Векторы x и \ddot{x} коллинеарны в силу уравнения (1). Оба слагаемые в предыдущей формуле равны нулю как векторные произведения коллинеарных векторов.

Из закона сохранения импульса следует, что вектор x(t) все время перпендикулярен одному и тому же вектору. Поэтому движение происходит в одной плоскости.

Отметим, что скорость заметания площади S(t) вектором x(t) равна модулю векторного произведения $[x, \dot{x}]$ см. рис. 1. Отсюда следует второй закон Кеплера:

$$\frac{dS}{dt} = \frac{1}{2}|[x, \dot{x}]| = \frac{1}{2}c.$$

2.2 Переход к полярным координатам

Введем на плоскости, в которой происходит движение, полярные координаты (r, φ) ; направление луча $\varphi = 0$ выберем пока произвольным. В касательном пространстве T_x

выберем ортонормированный базис:

$$e_r = \frac{x}{|x|} = (\cos \varphi, \sin \varphi), \ e_\varphi = (-\sin \varphi, \cos \varphi).$$

Вектор скорости в полярных координатах имеет вид:

$$\dot{x} = (re_r) = \dot{r}e_r + r\dot{\varphi}e_{\varphi},$$

поскольку

$$\dot{e}_r = (\cos\varphi, \sin\varphi) = (-\sin\varphi, \cos\varphi)\dot{\varphi} = \dot{\varphi}e_{\varphi}.$$

Закон созранения импульса примет форму $c = |[x, \dot{x}]| = r^2 \dot{\varphi}$. Итак,

$$r^2 \dot{\varphi} = c. \tag{2}$$

2.3 Уравнение эллипса в полярный координатах

Пусть E - эллипс с полуосями a и b и эксцентриситетом (отношением расстояния между фокусами к большой оси) e. Выберем начало координат в фокусе эллипса, а луч $\varphi=0$ направим по большой оси через другой фокус. Уравнение эллипса примет вид

$$r + \sqrt{r^2 \sin^2 \varphi + (r \cos \varphi - 2ae)^2} = 2a.$$

Перенесем r в правую часть и возведем обе части в квадрат; r^2 и r^2 сократятся. Из полученного линейного уравнения находим

$$r = \frac{p}{1 - e\cos\varphi}, \ p = a(1 - e^2).$$
 (3)

Отметим, что малая полуось эллипса имеет вид:

$$b^2 = a^2(1 - e^2) = ap. (4)$$

Эта формула будет важна при выводе третьего закона Кеплера.

2.4 Доказательство первого закона Кеплера по Фейнману

Приводимый ниже трюк рассказан, но не записан Фейнманом. Он опубликован последователями Фейнмана уже после его смерти.

Найдем вектор $\dot{x}(t)$ как функцию от φ . Если это будет сделано, мы получим тректорию планеты в полярных координатах следующим образом. Умножим скалярно \dot{x} на e_{φ} :

$$(v(\varphi), e_{\varphi}) = (\dot{x}, e_{\varphi}) = (\dot{r}e_r + r\dot{\varphi}, e_{\varphi}) = r\dot{\varphi} = \frac{c}{r}$$

В последнем равенстве использовано соотношение (2). Отсюда получаем

$$r(\varphi) = \frac{c}{(v(\varphi), e_{\varphi})} \tag{5}$$

уравнение траектории планеты в полярных координатах.

Найдем теперь $v(\varphi)$. В силу (1)

$$\frac{dv}{dt} = -k\frac{e_r}{r^2}.$$

В силу (2)

$$\frac{d\varphi}{dt} = \frac{c}{r^2}.$$

Отсюда

$$\frac{dv}{d\varphi} = -\frac{k}{c}e_r = -\frac{k}{c}(\cos\varphi, \sin\varphi).$$

Правая часть этого уравнеия зависит только от φ . Поэтому решение находится простым интегрированием:

$$v(\varphi) = Q - \frac{k}{c}(\sin\varphi, -\cos\varphi) = Q + \frac{k}{c}e_{\varphi},$$

где Q - некоторый постоянный вектор. Выберем теперь луч $\varphi=0$ так, что вектор Q будет направлен по отрицательной полуоси y:Q=(0,q), q<0. Тогда

$$(v(\varphi), e_{\varphi}) = (Q, e_{\varphi}) + \frac{k}{c} = q \cos \varphi + \frac{k}{c}.$$

По формуле (5),

$$r(\varphi) = \frac{c^2}{k + qc\cos\varphi} = \frac{p}{1 - e\cos\varphi},\tag{6}$$

где

$$p = \frac{c^2}{k}, \ e = -\frac{qc}{k} > 0. \tag{7}$$

Формула (6) задает эллипс, если орбита планеты ограничена (это равносильно тому, что Первый закон Кеплера доказан.

2.5 Третий закон Кеплера

Пусть орбита планеты - эллипс с полуосями a и b и параметрами (7), площадь которого заметается вектором x(t) со скоростью c. Тогда период обращения планеты по этому эллипсу равен времени, за которое заметается вся площадь:

$$T = \frac{\pi ab}{c}.$$

Найдем тепеть отношение $\frac{T^2}{a^3}$ используя формулы (4) и (7):

$$\frac{T^2}{a^3} = \frac{\pi^2 a^2 b^2}{c^2 a^3} = \frac{\pi^2 a p}{c^2 a} = \frac{\pi^2 p}{c^2} = \frac{\pi^2}{k}.$$

В правой части стоит константа, не зависящая от параметров движения планеты. Третий закон Кеплера доказан.

Движение точки в сферически симметричном центральном поле.

Эффективная потенциальная энергия. Сведение к уравнению Ньютона на прямой. Приедложение Клеро и вывод из него первого закона Кеплера.

Учебник, раздел 4.4.4