Листок 2

Срок сдачи: 16 мая.
Problem 1 Let A, B_{1} and B_{2} be three elements of an associative algebra. Let

$$
B=\left(\begin{array}{ll}
0 & B_{1} \\
B_{2} & 0
\end{array}\right) \text { and we understand } A \text { as }\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right) .
$$

Parameters a_{1}, a_{2} and a_{3} are in \mathbb{C} and we denote

$$
\sigma=\sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let us introduce dependence on m_{i} by means of relations

$$
\begin{gathered}
F^{(1)}(m)=F\left(m_{1}+1, m_{2}, m_{3}\right), \quad F^{(2)}(m)=F\left(m_{1}, m_{2}+1, m_{3}\right), \\
F^{(2,3)}(m)=F\left(m_{1}, m_{2}+1, m_{3}+1\right), \quad \text { etc. }
\end{gathered}
$$

and

$$
\begin{aligned}
& B^{(1)}=\left(A-a_{1}\right) B\left(A-a_{1}\right)^{-1}, \quad B^{(2)}=\left(A-a_{2}\right) B\left(A-a_{2}\right)^{-1}, \\
& B^{(3)}=\left(A-a_{3} \sigma\right) B\left(A-a_{3} \sigma\right)^{-1} .
\end{aligned}
$$

Find commutator identity and corresponding evolution equation.
Problem 2 Under the same conditions as in Problem 1 but in the case of evolution

$$
\begin{aligned}
& B^{(1)}=\left(A-a_{1}\right) B\left(A-a_{1}\right)^{-1}, \quad B^{(2)}=\left(A-a_{2} \sigma\right) B\left(A-a_{2} \sigma\right)^{-1}, \\
& B^{(3)}=\left(A-a_{3} \sigma\right) B\left(A-a_{3} \sigma\right)^{-1},
\end{aligned}
$$

find commutator identity and corresponding evolution equation.
Problem 3 Under the same conditions as in Problem 1 but in the case of evolution

$$
\begin{aligned}
& B^{(1)}=\left(A-a_{1} \sigma\right) B\left(A-a_{1} \sigma\right)^{-1}, \quad B^{(2)}=\left(A-a_{2} \sigma\right) B\left(A-a_{2} \sigma\right)^{-1}, \\
& B^{(3)}=\left(A-a_{3} \sigma\right) B\left(A-a_{3} \sigma\right)^{-1},
\end{aligned}
$$

find commutator identity and corresponding evolution equation.
$\underset{\sim}{\text { Problem }} 4 \underset{\sim}{\text { Let }} F$ be a diagonal matrix, i.e., its symbol is z-independent: $\widetilde{F}\left(m_{1}, z\right) \equiv \widetilde{F}\left(m_{1}\right)$. Prove that under this condition equality

$$
\widetilde{F G}\left(m_{1}, z\right)=\oint_{|\zeta|=1} \frac{d \zeta}{2 \pi i \zeta} \widetilde{F}\left(m_{1}, z \zeta\right) \sum_{m_{1}^{\prime} \in \mathbb{Z}} \zeta^{m_{1}-m_{1}^{\prime}} \widetilde{G}\left(m_{1}^{\prime}, z\right)
$$

takes the form

$$
\widetilde{F G}\left(m_{1}, z\right)=\widetilde{F}\left(m_{1}\right) \widetilde{G}\left(m_{1}, z\right)
$$

for any operator G.
Problem 5 Let G be a function of the shift operator only, i.e., its symbol is independent of the discrete variable, $\widetilde{G}\left(m_{1}, z\right) \equiv \widetilde{G}(z)$. Prove that under this condition equality

$$
\widetilde{F G}\left(m_{1}, z\right)=\oint_{|\zeta|=1} \frac{d \zeta}{2 \pi i \zeta} \widetilde{F}\left(m_{1}, z \zeta\right) \sum_{m_{1}^{\prime} \in \mathbb{Z}} \zeta^{m_{1}-m_{1}^{\prime}} \widetilde{G}\left(m_{1}^{\prime}, z\right)
$$

takes the form

$$
\widetilde{F G}\left(m_{1}, z\right)=\widetilde{F}\left(m_{1}, z\right) \widetilde{G}(z)
$$

for an arbitrary operator F.
Problem 6 Proof that relations

$$
p_{1}(T)=T, \quad p_{2}(T)=T+a_{12}, \quad p_{3}(T)=\left(T+a_{1}\right)^{2}-a_{3}^{2},
$$

give equation

$$
\begin{aligned}
{\left[\left(\Delta_{1} a_{1}\right.\right.} & \left.\left.-\Delta_{2} a_{2}\right)^{2}-a_{3}^{2}\left(\Delta_{1}-\Delta_{2}\right)^{2}\right] \Delta_{3} B= \\
& =a_{12} \Delta_{1} \Delta_{2}\left(a_{12} \Delta_{1} \Delta_{2}+2 \Delta_{1} a_{1}-2 \Delta_{2} a_{2}\right) B
\end{aligned}
$$

