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1 Jlekuus

1.1 O jgomagsax
1.1.1 IlepBoe HabJIOZEeHUE “BOJIHBI IIepeHoca”

[lepBoe mabmroeHNE yeaMHEHHOM BOJIHBEI B 1834r. cuesas MIOTIAHICKUI yYeHBIH 1
unzkenep JIx. Ckorr Paccen (1808-1882). Okontuns Yuusepcurer [rasro B 16 Jer,
oH paboTas B OT/Ie/IeHIN eCTeCTBEHHON HCTOPUX B DAUHOYpre, Te N3ydaJl IPOIyCK-
HyTO criocobrocTh Kanajaa FOumon. Bor B mporecce moncka Hanbosee onTuMaIbHO
KOHCTDYKIIUHU OapzK /Jiel KAHAJIOB, OH JIOJIOZKHJI O CJIC/TyTOIIEM:

“4 mabroast 3a IBUKEHNEM Oap:Ki, KOTOPYIO OBICTPO TAIIHIA BJIOJIb
Y3KOTO KaHaJja Iapa JIoIa e, Korga BHE3AIMHO baprKa OCTAHOBUIACH —
BCsl Macca BOJBI B KaHaJle MPUIILIA B JIBUXKEHUE; BOJa coOpaJach y HOCa
KopabJIsi B COCTOSTHUM OypPHOTO BOJIHEHHSI, 3aT€M BIPYI OTOpBaJach OT
HEro U MOKATUJIACh BIIEPe] ¢ OOJBIION CKOPOCTHIO, IIPUHSB BUI OOJIBIIIO-
IO yeMHEHHOT'O BO3BBINIEHNsI; OKPYTJIBIHA, IVIAIKNI, I€TKO BhIPayKeHHBIIN
XOJIM BOJIBI ITPOJIOJIZKAJT CBOE JIBUZKEHUE TI0 KaHaTy 0e3 BUIMMOIO M3Me-
HeHUsT POPMBI WM YMEHbIIeHHsI CKOPoCcTH. ¢1 Opocuics 3a 9Toi BOJIHOM
BEPXOM Ha JIOMIAIU U JIOTHAJI ee, KOI/Ia OHa BCE eIle JBUTaIach CO CKOPO-
CTHIO OKOJIO BOCBMHE HJIU JI€BATH MIJIb B 9ac, COXpaHsisl IIepBOHATAIBHY IO
dopmy, 1 nMeJIa OKOJIO TPUIATH (DYTOB B JJIMHY U OT (pyTa JI0 TOJIyTOpa
dyToB B BBICOTY. Ee BbICOTa TOCTENEHHO YMEHBIMAIACh, U TOCEe OJTHOM
WM JBYX MUJIb TIOTOHM s TIOTePsiT ee B m3rnbax KaHaja. Tak B aBrycre
Mecstte 1834r. mponsoIiiia MosI IiepBast BCTpeda, ¢ 3TUM HeOOBIKHOBEHHBIM
U IpeKpacHBIM SIBJIEHHEM, KOTopoe s1 HasBaJs Bosnoit [lepenoca ..."

Ilo anrymiicku:

I was observing the motion of a boat which was rapidly drawn along
a narrow channel by a pair of horses, when the boat suddenly stopped—
not so the mass of water in the channel which it had put in motion; it
accumulated round the prow of the vessel in a state of violent agitation,
then suddenly leaving it behind, rolled forward with great velocity, assum-
ing the form of a large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course along the channel
apparently without change of form or diminution of speed. I followed
it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour [14 km/h|, preserving its original figure some thirty
feet [9 m| long and a foot to a foot and a half [300-450 mm)| in height.
Its height gradually diminished, and after a chase of one or two miles
[2-3 km] I lost it in the windings of the channel. Such, in the month
of August 1834, was my first chance interview with that singular and
beautiful phenomenon which I have called the Wave of Translation.



CkorT Paccest mpoBest psiji 9KCIIepUMEHTOB (B JOMaIIHUX yejaoBusx!) u obHapy-
?KIJI HECKOJIBKO BasKHBIX CBOMCTB TaKNX BOJIH:

® DTHU BOJIHBI CTAOUIBLHBI M MOT'YT “IIyTEIIECTBOBATL Ha OOJIBIINE PACCTOSTHUS
e X cKOpOCTBb 3aBUCHUT OT BBICOTHI BOJIHDI, & IIUPUHA OT TJIYOMHBI BOJBI
e B orimame ot 0OBIMHBIX BOJIH, 9TU BOJHBI HUKOIJIA HA CJIMBAIOTCS.

Ero skcniepumenTaibHbIe Pe3yJibTaThl, KAK Ka3a/10Ch, ITPOTHBOPEUMIA TEOPUU TU/I-
poannamuku Heiorona u Beprymm. Ditpu u CTOKC CTOJKHYINCH ¢ TPOOIEMOiT 00b-
SICHEHUSI 9THX Pe3yJbTaTOB MOCPEJCTBOM COBPEMEHHOW WM TEOPHUU BOJH Ha BOJIE.
[TepBoie 0O0bcHeHUsT nosiBUMCH Juiih B 1870-x romax. B 1872r. Byccunecky mpej-
JIOKIJI YpaBHEHUE, OINUCHIBAIOIIEE JIIMHHBIE BOJIHBI HA IMOBEPXHOCTU YKUJIKOCTH U
[OKa3aJj1, 9TO OHO UMEET PeIlleHne THlla yeJuHeHHoit Bosubl. B 1876 romy Jiopa Pe-
neit (crarbst B Philosophical Magazine) B paMkax ¢cBOEro MaTeMaTuIecKoro mojxo/ia
noJiepKas pesyabrarsl Paccera n Byccuneky.

O inako peasibHbI TPOPLIB 1pousories B 1895r.: Kopreser u jie @pus nostyumin
ypaBHEHME PACIPOCTPAHEHUS BOJIH B OJIHOM HAITPABJICHUU 110 TIOBEPXHOCTU MEJTKOTO
KaHaJIa (JJ1si HeBA3KOMN, HECKUMAEMOIi, OJHOPOHON KUKOCTH B TIOCTOSTHHOM TI0JI€
TSZKECTH )

Uy — Uy + Upgy = 0. (1.1)

OHn mokaszajm, 9To 9TO ypaBHeHHe 00J/1aJ[aeT yeIWHEHHOW BOJIHOM, T.e. peleHneM
BUJIA
—2k2

t) =
ulz, ) ch?2k(x — 4Kkt — x0)

(1.2)

(OTKJIOHEHUE YPOBHS BOJBI OT CTAI[MOHAPHOIO IS JlaJbHeiiero yaobcrsa 0603Ha-
YEeHO —u), TJIe apaMeTp K — MPOM3BOJIbHASI TIOJIOKUTEbHAS KOHCTaHTa, He (hUKCH-
poBaHHas ypaBHenueMm. VMenno sty BosHy u Hab/moma Paccer.

1.1.2 VYpaBuenue KopreBera—me ®@pusza — 6ajlaHC aAUCIIepCUN M HeJIUHel-
HOCTH

PaccMoTpuM BOJTHOBOI TIPOIIECC B MIPE/IITIOIOKEHUN
1. orcyTrcTBUS JuccUIANN,
2. OTCYTCTBUS JINCIEPCUH,
3. MaJIOCTU aMILIUTYIbI KojebaHuii

TOI‘,IL& BOJIHOBO1 IIponecc OIIMChbIBACTCA BOJIHOBBIM YPaBHCHHEM:

OFp=cdp. (1.3)



JluccunaTUBHBIE CUCTEMbI — TAKHUE CUCTEMbBI Y KOTOPBIX MEXaHUIeCKas Heprus (CyM-
Ma KHHETUYIeCKOIl U MOTeHIMAJILHOI) yObIBAET, Mepexo/id B Apyrue (popMbl, HAITPH-
Mep B Tertory (dissipatio — paccenBanue, ncyesnosenue (Jart.)).

Hucniepcust (dispersio — paccestnue (J1a1.)) — 3aBHCHMOCTH (ha30BOil CKOPOCTH
PapMOHUYECKON BOJIHBI OT €€ 4acTOThl. [apMonndeckas (I10CKast) BOJIHA:

etk (1.4)
re W — 9acToTa, k — BOJIHOBOI BEKTOD,
w(k) = kv(k) (1.5)
ow

v(k) — dazosas ckopocts. ['pynmnosas ckopocrb= —. JlucrepcnonHOe COOTHOIIIEHRE

ok

— ypaBHEHUE, CBA3BIBAOINEE YacTOTY KoJiebaHuii w U BOJHOBOW BeKTOD k: w = w(k).
Jlucenmarumst TpUBOUT K 3aTyXaHUIO BOJIHBI, JIUCIIEPCUST — K PACIIOI3aHUIO U I1e-

PEMETTMBAHNIO TAKETOB, a HeJIMHeHHbIe 3(PPEKThI — K YKPYIeHno (PPOHTOB. DhdeKT

HEJIMHEWHOCTH XOPOIIO JIeMOHCTpupyeT 6e3uctepcnoe ypapaenue Kiad:

up = 6uuy, (1.6)
KOTOpOE peliaercst cieyiomum obpazom. Haiinem s u3 ypasuenus
s = x + 6tuo(s),

rie uo(x) — HagaapHOe manHoe. Torma perenne 3ajgadn Kormm masg (1.6) maercs
HOCPEJICTBOM

u(t,x) = up(s(t, x)). (1.7)

PaccMOTpUM KaK MOYXKHO yUeCTh MaJIyIo HeJHMHEHHOCTb 1 Jiuciepcuio. Boliemnm
u3 O0IIEro perenusi BOJHOBOrO ypasHenus ¢ = i (x — ct) + o(x + ct) BosRY,
PaCIPOCTPAHSIONIYIOCS, CKazKeM, HAIPABO:

0y o +cd, ¢ = 0. (1.8)

Vurem HesuHeiinyio nonpasky K daszopoit ckopoctu: v(k) = vo+vik?+uvokt+. . . Tak
4TO 3aKOH JMCIIEPCUU NpUHUMaeT Buj w = ck — Bk3 (wien nopsiika k? orcyTcTBYy-
€T, TTOCKOJIBKY TapMOHUYECKas BOJIHA JIOJIKHA YI0OBIETBOPATE JuddepeHImaIbHOMY
yPaBHEHHUsI C BellecTBeHHbIMU Ko dunmenramn). Takoil 3aKOH JUCIEPCUN 1aeTcst
YPaBHEHHEM:

Oy +c0y p+B02 0 =0 (1.9)

Teneps BBeeM HesmHeitHOCTE. Ypasuenus (1.8) n (1.9) numeroT By 3aKOHOB €O~
xpanenust: O+ 0,7 = 0, re. [dar)(z,t) coxpansiercss Bo Bpemenn. JJo6aBuM 1epsyio
KBa IPATUIHYIO TIONPABKY K j, YTO COXPAHUT 3TO CBOiCcTBO: j = cib + B0 + %w2.
Torna Op + Ot + B + apdyrp = 0, uro nociie 3aMeHbl £ — T + ct, 1 = —gu
naet ypaBuenne Kad.



1.1.3 Pa3sBuTtue Teopuu HeJIMHEWHBIX ypPaBHEHUI

B 1954r. ®epmu, Ilacta u Yiam, usydas na 9BM moBeenne nemnoIkn HeJTMHEHHBIX
OCIIMJIISITOPOB (ITO MOYKHO PACCMATPUBATH Kak ducjieHHoe MmojenupoBanne Kiad),
OOHAPYKUIN AHOMAJIbHO MEJIJIEHHYIO CTOXaCTH3AIIMIO ITOM 9TON JUHAMUIECKON CH-
CTEMBI.

B 1958r. CarjieeB mokasaJi, 9T0O B IJIa3Me MOT'YT PACIIPOCTPAHATHCS COJTUTOHBI, &
lapaaep u Mopukasa B 1960 r. moKazaJjii, 9TO ypaBHEHUS, ONUCHIBAIOIINE CUILHYTIO
mwiazmy anajgorndabl Kiad.

B 19651, 3abycku u Kpyckas, sKCIepuMEHTUPYs € YHUCJIEHHBIMU DEIeHUus MU
Kad nokaszaan, 9T0 COJMTOHBI CTAJKHUBAIOTCS YIPYTO U BBEJH CAMO IIOHATHE ‘‘CO-
Jmton’. 3aTeM OBLTH OTKPBITHI OECKOHETHBIE CEPUHU 3aKOHOB COXPAHEHUSI.

Mpr Gy/eM Ha3bBATH COJMTOHAMHU JIFOObIE (9KCIOHEHIMATBHO) JIO-
KaJIN30BaHHbIE HeJIMHEHHbIE BOJIHBI, KOTOPbIE B3aHMOIEHCTBYIOT C IIPO-
M3BOJIBHBIMU JIOKQJIBHBIME BO3MYIIEHHAMHI U BCEL/Ia BOCCTAHABJ/INBAIOT
ACHMIITOTHYECKH CBOIO (hOPMY.

B 1967r. I'apauep, ['pun, Kpyckan nu Muypa mpeioKuim MeTo/I CIIeKTPaIbHOTO
1peoOpa3oBaHust KaK MeTOJ pelenns 3aaaqu Ko

u(0, ) = up(x), (1.10)

st ypasaenns Kn®, riae ug(x) — 3amannoe HadaabHoe ganHOe. COBpeMeHHbI Ba-
PHUAHT 3TOr0 METO/Ia HA3bIBAETCSI METOIOM OOPATHON 3aJa9i PACCEeTHUS.

B 1968r. Jlakc (Peter David Lax) 06061mut MmeTos 06paTHO 3a/1a4u paccesiHust i
BCKPBIJI aJIredpandecKnii MexaHu3M, JIexKalluii B ocHoBe paborsl ['apaHepa, ['puna,
Kpyckama n Muypst. Ypasuenne Knd skBuBasienTno npeacrasiieHuto Jlakca

L, =[L,A (1.11)

1t apbl uddepernuaababx omneparopos L u A (ToBOpsT Tak:Ke, 9TO OIepaTOphl
L u A o6pa3syor JaKCOBY mapy):

L=-0>+u, (1.12)

A =40 — 6ud, — 3u,. (1.13)

Kaxk MbI yBuinM B JajibHeiiem, nMeHHO cooTHornenne (1.11) jekut B 0CHOBe mpu-
MEHIMOCTHU MeTo/1a OOpATHOI 3a/1a91 K HeJMHEHHBIM SBOJIIOIIMOHHBIM YPABHEHMSIM.
Camo cymecTBOBaHIE W KOHKPETHBIM BUJI 9TUX OIEPATOPOB, KOHEYHO, 3aBUCAT OT
paccMaTpUBaEMOro HEJTMHEHHOIO ypaBHEHU.

B 1971r. I'apnenep, 3axapos n Payiees nocrpousn Teopuio ypapaennst Kid kak
raMUJIBTOHOBOM crucTeMbl. B Kitaccmdeckoil MexaHnKe mMeeTcss Teopema JImyBuiis,
COTJIACHO KOTOPOI CUCTeMa, B KOTOPO#l IMC/I0O MHTErPAJIOB JIBUKEHUsT B MHBOJTIOIIIT



COBIIAIAET C YUCJIOM CTeIeHel CBOOOIBI 11, MOYKET OBITH ITOJTHOCTHIO IPOUHTEIPUPOBa-
Ha (pellleHa) MeTOJIOM pa3/ieJieHus TIePeMEeHHbIX B ypaBHeHnn [aMmuibrona—dko6u.
Takas cucreMa gBJIAETCAd UHTEIPUPYeMoOii cuctemoii. TpaekTopus Takoil CUCTEMbI
B 2n-MepHOM (ha30BOM IIPOCTPAHCTBE MOXKET OBITH IPEJACTABICHA B IOIXOISIINX
[IEPEMEHHBIX (TIePEMEeHHBIX JIeficTBUe-yroJ1) Kak HaMOTKa Ha n-MepHoMm Tope. Cu-
cTeMa, YMC/I0 MHTErPajIoB B KOTOPOl MEHbIIE YKCJIa CTeleHeil CBOOOIbI, IPOsIBISIET
Xa0TUIECKOE TOBEJIEHNE, TO €CTh TPACKTOPHUHU B (pa30BOM IPOCTPAHCTBE C OJIM3KH-
MU HAYAJIbHBIMU YCJIOBUAMHU MOTYT SKCIOHEHITMAJILHO PacxXoauThed. [Ipu Hebosb-
o# JepopMalnn UHTErPUPYEMOil CHCTEMBI B HEMHTEIPUPYEMYIO N-MEpPHBII TOp B
2n-mepHOM (ha30BOM IIPOCTPAHCTBE paspymiaercs (‘pasmbiBaeTcs’), MPEBpAIasich,
HaIIpUMEp B CTPAHHBII aTTPaKTOp.

B 1971r. Baxapos u [llabar pemman meTooM 0OpaTHON 3aja4uu HeJInHEHHOe
ypasuenwue [IIpemmarepa! B 1973r. meros 6611 IpuMeHeH Cpa3y K HECKOJIBKUM ypPaB-
HeHusM B pabore Absosuna, Kayma, Herosmra u Curypa. Iocte stux pabor craso
HOHATHO, 4TO ypapHenne Kn®d — He enuHCTBEHHOE HHTErpUpyeMoe ypapHerue!!!

B 1975r. 3axapos u [Hlabat mnpemioKuin Iponeaypy OJeBaHusl.

[Tomumo ypasuenus Ka® B XIX Beke ObLn m3BeCTHBI: ypaBHeHue sine-I'opaon
n ypasuenus Huneiiku. /g ypaBuenus sine-I'opoH, BO3HUKAIOIIErO IPU ONUCAHUT
MMOBEPXHOCTEH IMOCTOSHHON OTPUIIATE/ILHON KPUBUBHDI, ObLT OTKPBIT CIIOCOD TTOCTPO-
eHUsl U “pa3MHOXKEHHsT COJIMTOHHBIX pPeIleHnit — mpeodbpasoBanue BekmayHa.

B cosmanune m pa3BuTHE TEOPHHU COJUTOHOB OTPOMHBIN BKJIQJ BHECJIH IITKOJIBI
®angeea u HoBukosa.

1.2 O6bmag cxema mMeToda OoOpaTHOI 3ada4un. Y paBHEHUE
KopteBera—ge ®pusa

PacemorpuMm Teneps mojgpodHee cxemy MeTojia 0OpaTHOM 3a/1avu Ha IpUMepe ypaB-
nernst Kopresera—ae ®@pusa. Jlakcosa napa mis mero nana B (1.12) u (1.13):

L=—-0+u, (1.14)

A = 40% — 6u0, — 3u,. (1.15)

Bazkneiimeit ocobeHHOCTBIO ITaphl Jlakca sB/IsieTcst TO, 9TO BpeMeHHAs ITPOM3BO/IHAS
He BXoauT B L-omeparop. Takum obpa3oM MBI MOYKEM paccMaTpuBaTh ¢ Kak mapa-
MeTP M WCCJIeJI0BATH CIIEKTPAJbHbIE CBOHCTBA 3TOrO OIEpaTOpa, T.€., NCCIEeI0BATH
pelenHust ypaBHEHUS

Ly=M\y. (1.16)

Do ypasuenue Ha GyHKIWO Y(t, T) €CTh CHIEKTpaIbHas Tpobjema sl orepaTo-
pa (1.12), uHOr I8 OHO TAaKKe HA3BIBAETCsI BCIIOMOTAaTeIbHON JIMHEWHOM 3aaaveit
JJIsT PACCMATPUBAEMOTO HEJTMHEHHOTO ypaBHeHUs. 3aMeTuM, 9To B cuiy (1.11)

(L=X)(p+Ay) =0, (1.17)



T.e. KoMOuHaIus y; + Ay Takke yaosiaerBopsier ypasuernio (1.16), Ho He obs3aHa
OBITH HysIeM. B TO ke BpeMs#, ypaBHeHUe

Yy =—Avy (1.18)

coBmecTHO ¢ ypasHerueM (1.16) B cumy (1.11). 3mech yMecTHO MOAYEPKHYTH, YTO
COBMECTHOCTH YPaBHEHH O3HAYAET JIUIIh HAJTUINe UX OOIINEro peneHust, HO OTHIO/Ib
HE TO, YTO KayKJI0e PEeIIeHre OJHOIO M3 HUX OYJIeT pelleHueM U JIPYroro.
Ypasuenue (1.16) Xopoiio u3BeCTHO B (DU3UKE: ITO CTAMMOHAPHOE OJHOMEPHOE
ypasuenue [lpeaunrepa. Brpodyem, oHO TakzKe MCCIEI0BAJIOCH MaTeMATHKAMUI €II1e
B XIX Beke (ypasuenue [Irypma—/Inysmmiias). ng mac BayKHO, 9TO Jisi ypaBHe-
must (1.16) paspemmiMbl TipsiMast U obpaTHas 3a7adn paccestus. [Ipsmast 3ajada:
olpeJie/IeHNe 110 IMOTEHINALY U JAHHBIX PacCesHus, KOTopble Mbl 0bo3HaunmM S. Mx
olIpeJIe/IeHUsI U CBOMCTBa OyIyT JaHbl B IOC/IeLyIomuX Jeknuax. Obparnas 3a1a4a;
BOCCTaHOBJICHHE TIOTEHIMAJIA U 110 JaHHLIM paccesHus. [Ipu 5ToM MbI HOKaxKeM Kak
U3 YCJIOBUS JIOCTATOYHO OBICTPOrO yOBIBAHUS ITIOTEHITAJIA HA TPOCTPAHCTBEHHOM Oec-
koHeunoctn paBerctBa (1.17) u (1.18) npuBogaT K umHeHHBIM Aud depeHImaaTbHbIM
ypaBHEHUAM 10 t Ha JaHHBIe paccesnud. TakuMm oOpa3oM, Kak yzKe TOBOPUJIOCH, 00-
Iasi cxeMa MeTojia 0OpaTHO 3a/1a4l pacCesHus B IPUMEHEHNN K TeOPUH HeJInHei-
HBIX HMHTEIPUPYEMBIX yPaBHEHMIl IeMOHCTpHUpPYeTcs ciemyiomeii auarpammoii: ITo

Sanaga Komm Pemenne
U — OUUy + Upgg = F—mmmm e e e e e > 3a71aun Kormmm
u(0,z) = up(x) u(t, x)
[IpsAvas O6pdrHas
3a/p4a 3a/pda
Jlannbie paccesHus Jlanmble paccesHust

upu t = 0: oo 110 1 TIPU TIPOU3BOJILHOM ¢
S, (permaercs sIBHO) S(1)

3aJAHHOMY HAYAJIbHOMY JAHHOMY Ug(Z) CTPOATCS OTBEYAIOIINE eMy JTAHHbIE pacce-
saang Sy. lasee, aBHO pemaeTcs ypaBHEHNE BPEMEHHON 3BOJIIOIHN JIJIST CIIEKTPAJIb-
HBIX JIAHHBIX, T.€. MBI HAXOJUM JaHHble paccesuus S(t). [lo aum, ncnonb3yst ypas-
HeHMs OOPATHOI 38,1891, Mbl BOCCTAHABINBAEM HOTeHIMAT u(t, ), KOTOPbIi BBUILY
skBuBasieaTHOCTH (1.11) n ypasuenus Ka® (1.1) ects pertieHne 9T0ro HEJMHEHHOTO



ypaBHeHUs U IocTaBjeHHoi 3agaun Ko, Takum obpas3om, perenne HEJIUHEHHOTO
YPaBHEHUS CBEJIOCHh K PEIIeHUI0 TPeX JIMHEMHBIX 3a/1ad, O/IHA U3 KOTOPBIX PeIraeTcs
sseao! Kak MBI Buamam paHee, BeCb METOJ OCHOBAH MMEHHO Ha Pa3pernimMOCTu 00-
paTHOIl 3aa9u. DTO — OCHOBHOE YCJIOBHE HMPUMEHUMOCTH MeToma. OUYeBHIIHO, UTO
1t ypasaenus (1.1) ectb u ropasno 6Gosiee mpocTas “y1akcoBa mapa’:

L=0,+u, A=3u?—u,, (1.19)

st KOTOPOit Takzke paBeHcTBO (1.11) skBuBasientHo ypasuenus Kiad (1.1). Oxxaxo,
Takoil L£-omeparop — mpeobpasoBaHue Mo100us oreparopa Oy

L =exp —/xu(x) 3, exp —/xu(:v) :

IJle B OTJIMYUU OT PACCMOTPEHHOTO paHee orneparopa K omnepaTop mpeodpaszoBaHus
sABJIETCs onepaTopoM ymHOXKenus. [losromy Takoit oneparop £ mmMeeT TpUBHAJIb-
HBIA CIIEKTD, He 3aBUCSINHUIT OT u(X), U COOTBETCTBEHHO, 0OpATHAsI 3a/a49a JIjisi HEro
He umeeT cMmbicsia. OTMeTuM, 9TO TaKoro poja decrosie3nbie “napol Jlakca” mMoryr
OBITH BBIIIUCAHBI JIjIs JTIOOOTO ypaBHEHUs B JIIOOOM 4wnciie nuaMepenwuii. [losromy, ro-
BOps 00 MHTErPUPYEMBIX YPABHEHUSIX, MbI BCerjia Oy/ieM UMeTh BBUJLY HAJIUYIHE JIJIsT
HUX JIAKCOBO#I Iapbl, B KOTOPOI Jjist onieparopa L OCMBICICHBI MIPIMas U 00paTHas
3a/1a4M.

Jlureparypa:

B. E. Baxapos, C. B. Manakos, C. II. Hosuxos, JI. II. IIuraesckuii, “Teopus
comuToHOB: MeTos obparnoii 3amaqn’’, M., “Hayka”, 1980.

®. Kamomxkepo, A. eracnepuc, “CrekrpajbHble TPEOOPA3OBAHUS M COJIUTOHBL.
Meto/bl perieHust U MCCIE0BAHUST HEJTUHEHHBIX SBOJIOIUOHHLIX ypaBHeHuit’, M.,
“Mup”, 1985.



2 Jleknus

2.1 MHoromepHble U JUCKPETHbIE YPaBHEHMUS.

Pacemorpum ypaBuenne KanomueBa—Ilersuamsunu (KIT)
(uy — 6ULy + Upgy )y = 302uyy (2.1)

Ha BerecTBennyio gynxmio u(t, r,y). 3aeck 02 = +1. B ciayuae 0% = 1 3710 ypasHe-
nue naspiBaercs KIII, a npu 0? = —1 — KIIII. Ypasuenue KII — onun u3 0CHOBHBIX
IPUMEPOB B 00JIACTH MHTEIPUPYEMBIX YPaBHEHWIT B TPOCTPAHCTBE 2 + 1 m3MepeHuii.
B dwusnuecknx 3ajavax OHO BO3HHKAET B CAMBIX Pa3HBIX KOHTEKCTaX U I 000-
ux 3HaKoB o2. [Ipu 9TOM CBOCTBa pelleHnil STHX yPABHEHHUH CHJILHO 3aBHCAT OT
BbIOOpa 3HaKka. Omeparop Jlakca umeer BuI

L=i0d,+ 9 —u(z,y), o=1,i (2.2)

3mech MBI OysieM paccmartpuBarh ypasuenue KIIII, T.e.

(U — 6UUy + Upzy)w = —3Uyy. (2.3)

Ero napa Jlakca ectb
L=—-0,+ 0 —u(z,y), (2.4)
A =40 — 6ud, — 3u, — B/dzz' uy (2, y), (2.5)

tak aro (2.3) sxBuBasenTHo (1.11).

B nocieanee BpeMsi OOJIBINONR MHTEPEC BHI3BIBAIOT PA3HOCTHLIE yPaBHEHMS, T.€.
ypaBHeHUsI Ha (DYHKIMN, HEKOTOPbIe M3 MEPEMEHHBIX KOTOPBIX (BO3MHOXKHO, BCE)
IPUHUMAIOT JIMCKPeTHbIe 3HadeHuns. Hambosiee M3BECTHLIM 3/1€Ch SIBJISIETCS pas-
HOCTHOE ypaBHeHHe XUPOTbI. DTO ypaBHEHNE Ha BEIECTBEHHO3HATHYIO (DyHK-
w0 v(mq, ma, M3) TPeX JTUCKPETHBIX MepeMeHHbIX m; € Z, i = 1,2,3. Beoag 060-
3HAYECHUS JIJIs1 IEPBLIX Pa3HOCTEN:

vi(my, mg, ms) = v(my + 1,mg, m3) — v(my, ma, ms),
va(my, my, ms) = v(my, mg + 1,m3) — v(m1, ma, ms),
U T.JI., 9TO ypaBHEHME 3allUChIBACTCI KaK:

[Ul — 'Ug} V1,2 + [Ug - 1)3} V2,3 + [’Ug — Ul} V31 = 0. (26)

AnaJsiornaso IpeablAyIIuM IIOCTPOCHUAM BBIBOJAUTCA U IIapa Jlakca sToro YpaBHE-
HM:

pa(n, k) = @1(n, k) + (va(n) — vi(n)e(n, k), (2.7)
p3(n, k) = @1(n, k) + (vs(n) —vi(n))e(n, k). (2.8)

[TocpemcTBoM MpeJiebHBIX MPOIELYD ypaBHEHHe XHUPOThI MOPOXKIaeT MHOTue (B
HeabeJIeBOM CJIydae — BO3MOXKHO, BCe) MHTErPUPYEMbIE yDaBHEHMUSI.
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2.2 KowmMmmyTaTopHbI€ TOXKJIECTBa

st mo0bIX ABYX 3/1eMeHTOB A 1 B TPOM3BOJIBHON ACCOMMATUBHON areOphl BHITIOJI-
HEHO CJIEIYIONIee KOMMYTATOPHOE TOXKJIECTBO:

4[A3’ [A’ BH - 3[A2> [A2> BH - [A> [A> [A> [A> Bm] = 0. (2'9)

Jlns1 mokazaTeIbCTBa 9TOI0 TOXKIECTBA JIOCTATOYHO PACKPBITH BCE CKOOKHU, IT0JIb-
3ysICb CBOMCTBOM aCCOIMUATUBHOCTH. 3aMETUM Telephb, IYTO KOMMYTATOPhI CTeIeHei
orneparopa A KOMMyTHPYIOT MexKIy coboro. IloaTomy MBI MOXKeM 3aaTh 3aBHUCH-
MOCTH B 0T Ipou3BOJILHOIO HaboOpa BpeMeH iy, ta, ... popMyIamMu

Bt1 - [A, B], Bt2 — [Az,B], Btg - [Ag,B],..., (210)
qro B cuity (2.9) osnauaer, uro dyukuusa B(ty, e, t3) yI0BIETBOPsieT YpaBHEHUIO

*B(t) 382B(t) _9'B(Y)

4
Ot, 01, 02 ot

=0, (2.11)

T.e. JimHeapu3zoBannomy ypasaenuio KIIIT.

ToxecrBo (2.9), Kak ObUIO CKA3aHO, MOXKHO JIOKA3bIBATH HEIIOCDPEICTBEHHO
npoBepKoii. OJIHAKO HPOIIE IPOBECTH JI0KA3ATEIbCTBO JIJId CJIydasi, KOrja onepaTop
A ecTb orepaTop yMHOXKEHUS B HeKOTopOM HpOCTpaHCTBe (Af)(x) = xf(x), a ome-
parop B — unrerpanbmbiii oneparop (Bf)(z) = [dyB(x,y)f(y) ¢ mponssosbHbIM
siapom B(z,y). Torma ast sapa KOMMyTaTopa nmveeM [A, B]( y) = (z —y)B(x,y),
U aHAJIOTWIHO, JIUIA Beex crapinux creneneit (A", Bl(z,y) = (2" —y™)B(z,y). Boob-
e, /7T IPOn3BOJIbHOM dyHKImH oT oneparopa A mveem [F(A), ]( y) = (F(z)—

2

F(y))B(z,y). Obosnauas a = x —y, = 2% —y?, numeem: z = 6—2Fa ny = P 2_ “.

2 42
Tax aro F(x) — F(y) = F(ﬁ ;L a ) — F(ﬁ 5 a ), YTO, COOCTBEHHO, U JIaeT TOXK-
a a

nectBo. B wacraoctu, mosaras F'(A) = A", noaydaem

2~y -yt = 3 PN gy,

m!(n —m)!

m=1

TaK 9YTO MbI IIPUIIJIN K HO.Hy6€CKOH€‘IHOMy H&60py KOMMYTaTOPHBIX TOXKJIECTB

(A" [A,...,[A,B]..] =
h,_/
[(n—1)/2] o)
R — [AZ[A A, AB)L), n>2,
m=0 n—2‘7,n—1 ;;n
(2.12)

11



KOTOpPOE TaKzKe MOYKHO IIPOBEPUTH HerocpeacTBeHno. 3jech [(n — 1)/2] o3mauaer
Heayio 4acTb 4uciaa. B cury (2.10) Mbl BUJUM, YTO IO IepeMeHHBbIM t1, iy U Ty
BBITIOJTHSIIOTCST YPABHEHUST:
_ [(n—1)/2
o1 B(t)

1 n! on+2m=1R(¢)
oty %o, 2n1

]

(2.13)

m=0

KOTOpPbIE HA3LIBAIOTCS BBICIIUMU JIMHeapu30BaHHbIMU ypaBHeHussMu KIIII nepapxun.
B sTom mposiBiisieTcs o0 u3 crenuduIecKux CBOMCTB HHTEIPUPYEMBIX YpaBHEHHI:
OHH BCErJa sIBJISIIOTCSI dJIEMEHTaMU OECKOHEUHBIX MepapXuil MHTerpUpPYEMBbIX ypaB-
HEHU, YIIOPSI0YEHHBIX 110 CTEIEHAM CTapINuX MPOu3BOAHbIX. [Ipu sToM ciemxyer
HMETh BBUJLY, YTO BKJIIOUEHUE, CKasKeM, YeThIpeX BpeMeH (Hampumep, ti, to, t3 ¥ ty)
He 03HaYaeT, 9TO Mbl IMEEM HHTEIPUPyeMoe ypaBHeHne (PYHKIIUU YeThIPEX ITePEeMEH-
ubix. Ha camom jsieste, dbyukims B(t) B 9T0M ciiydae yJIOBIETBOPSET JIBYM ypaBHe-
HusiM u3 (2.13), KaxKji0e U3 KOTOPBIX SBJISICTCS YPABHEHUEM TI0 TPEM He3aBUCHMBIM
IepeMEHHBIM: TIPU N = 3 9TO t1, to W t3, a mpu n =4 — 3710 t1, 1y U ty.

Beens 3aBucuMocTh orneparopa B or “Bpemen” (HE3aBUCHMbIX TEPEMEHHBIX) 110
(2.10) mbI mponun K JuHeRHbIM T depeHIaibHbIM YPABHEHUAM, KOTOPBIM OH
VJAOBJIETBOPSIET B CHJIY KOMMYTATOPHBIX TOXKJIECTB. Ternephb Hallla 3aja4a — IIOCTPO-
UTh COOTBETCTBYIOIIHNE HeauHelinble ypaBuenus. OIHaKO MIPeIBAPUTEIHLHO MbI Pac-
CMOTPHUM OITEPATOPHYIO pean3annio 31eMeHToB A n B acconuaTuBHOM aareOphI.

12



3 Jleknus

3.1 Commutator identity and linear equation on an associ-
ative algebra

We start with the following simple observation. Let we have an associative algebra
with unit I and let for some element A in this algebra there exist inverse elements
(A — a;I)~! for some constants ay,as, a3 € C (a1 # as # az # a1). In what follows
we omit unity operator and write A — a; in such cases. Let B be any other element
of this algebra. It is easy to check that there exists commutator identity

alg{(A — &1)(/1 — CLQ)B(A — &1)_1(/1 — 0,2)_1 + (A — ag)B(A — &3)_1}+
+a23{(A — &2)(/1 — ag)B(A — &2)_1(/1 — 0,3)_1 + (A — al)B(A — &1)_1}+ (31)
+a31{(A —a3)(A—a))B(A—a3) "(A—a))™" + (A —ay)B(A - a2)_1} =0,

where we denoted differences
a;; = a; — a; # 0 for ¢ # j. (3.2)
Eq. (3.1) also can be written as

a12{ (A —a1)(A = ag) B(A — a)) (A —ag) "'+
+ (A —a3)B(A —az)™'} + cycle(1,2,3) =0, (3.3)

Notice that if some difference equals to zero, say ais, we do not need to make
calculations based on properties of the algebra to prove that (3.1) is identity of the
kind 0 = 0. So in what follows we set that all differences in (3.2) are nonzero.

In this case in order to prove (3.1) we have to use associativity of the algebra that
enables to open parenthesis. But as a simplified approach, also in search for such
identities we can consider some special realization of elements A and B of the algebra
as operators in some space. Say, let we have L? on the real axis, f(r) € L?. Let A
be multiplication operator: (Af)(x) = xf(x), and (Bf)(z) = intdyB(z,y)f(y) be
some integral operator. Applying then the Lh.s. of (3.1) to f we get that in the
integral with respect to y integrand B(z,y)f(y) got factor

o i) el a e )

+a31{(x_“3)(x_a1) +‘%_a2} =0, (3.4)

(y—a3)ly—a1) z—ay

where now equality follow by simple calculations and takes place for any x and y.
In this course we consider discrete equations, i.e., equations depending on discrete
variables 1,2, etc. In other words we consider functions and operators (matrices)

13



u(m), F(m), etc., depending on m = {my, My, Ms, ...}, where m; € Z. Throughout
this text we use the following notation
F(l)(m) = F(ml + 1am2am3)7 F(2)(m) = F(mlamQ + 1am3)a

3.5
F(2v3)(m) = F(mi,my+1,m3+1), etc. 35

so that upper indexes 1, 2, 3 and so on in parenthesis denote unit shifts of the
variable with the same number. It is clear that such shifts commute:

FO2) = (F)O) = (F@)0) = peD), (3.6)

Existence of identity (3.3) suggests to introduce dependence of B on three
discrete variables my, ms, mg belonging to Z by means of equalities

BY = (A—a;)B(A—a,])™,
B(z) — (A — CLQ[)B(A - CL2]>_1, (37)
B® = (A —asl)B(A — asI)™,

Then by (3.1), or (3.3) B(m) obeys linear difference equation
a1n{ B" + B®} + cycle{1,2,3} = 0. (3.8)

While this equation, valid on an arbitrary associative algebra, will be the main
subject of our consideration here, it is not the only identity of such kind. Let us
consider “derivation” of the above equality. Following (3.7) and above realization of

.. r—a .
elements of associative algebra we denote «a; = . Next, we use, say, equations
Y—a;
for : = 1,2 in order to write x and y as functions of a; and as. Then we insert these

values in a3 that gives polynomial relation

a12{a1a2 + ag} + cycle{1,2,3} =0, (3.9)

that is the way to write (3.8) in terms of that special realization. Of course, finally
one has to check that equalities (3.1), or (3.8) are valid for any elements of associative
algebra.

In what follows we show that linear difference equation (3.8) can be lifted to
nonlinear integrable difference equation—the famous Hirota difference equation, that
has a lot of literature.

3.2 Cauchy—Green formula

Below we use terminology of the theory of functions of complex variables and
notation z = zge + iz € C. We also write d*z = dzgedzim = 2idz A dZ and
derivatives 0, = (0., — i0.,,) = 0, Oz = (0., +10,,,) = 0. Function f(z) is
analytic if it is differentiable and obeys Cauchy conditions, that in these terms can

14



be written as d-f(z) = 0. Here we do not assume analyticity of functions under
consideration and use notation f(z) as short for f(zge, 2im), i.e., function of two real
variables. Under proper assumptions on smoothness of a function f(z) of complex
variable and border 9D of a simply connected domain D on C one has Green’s
formulas:

2i/d2z 3f(2) = ]{dzf(z), 2i/d2z Of(2) = —fdzf(z),

D oD D oD

where domain D is to the left from the contour 0D in process of integration by it.
Useful relation is given by means of the formula from the theory of distributions:
=1
0—=7(2) = 19(2Re)0(21m),
z
where 6(zge) and 6(zy,) are delta-functions of their arguments. In order to prove this
relation we let function f(z) to be infinitely differentiable and to decay at z — oo
faster than any power of z (both these conditions are too strong, in fact) and use
definition of derivative of a distribution:

/d2 (5 %)f(z) _ /d2 égf(z) -

:—lim/dzzlgf(z):—lim/dzzgﬁz
e—0 z e—0 z

|z|>€ |z|>€

where we used that in this domain function 1/z is analytic; then by the Green’s
formula

— —1 lim dz /(z) = —f(.O) lim % dz% = 7f(0),

22 e—0 z 22 e—0
|z|=¢ |z|=¢

where f(0) was substituted for f(z) for ¢ small enough and the last integral was
calculated explicitly. By means of these relations we can prove the Cauchy—Green

formula: . / ) Yy
16 = =5 fa=fEL L [,

21 z—2z w z— 2z
aD D

when z € D C C and f(z) = 0 otherwise. This formula generalizes to the non-
holomorphic case the standard Cauchy formula. Here we denoted J = 05

3.3 Operator realization of elements of an associative algebra.

In order to arrive to nonlinear evolution equation we need a so called “dressing
procedure”, that in its turn require specific realization of elements of associative
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algebra. Taking that we are working here with discrete variables running through 7Z
into account, we consider (infinite) matrices F', G, ets. Let T denotes shift matrix
Tyt = Oyt +1- For any matrix F' = {Fj;}; jez we introduce f,,(m1) = Finy my—n;
so that matrix F' can be written as

F=>f1m, (3.10)

ne”

where all matrices f,, = diag{ f,(m1)}m, ez are diagonal, i.e., mutually commuting
ones. Notice, that this is leading consideration only, so we do not discuss convergence
of the above series. With this accuracy we uniquely associate to every matrix F' its
symbol

F(my,z) =Y fulm)2", (3.11)

where my € Z, 2 = 2gre + 121 € C. It is easy to see that the standard product of
matrices F' and G in terms of their symbols takes the form

__ d¢ ~ L~
FG(my, z :% —F'(my, 2 mem Gl 2). 3.12
I D
Here and below we use relations
ZCZI 27T'l< 6"70’ 66((]) nZE_OO C]’ (3 3)

where the latter one gives the delta-function on the contour, i.e.,

i _
$ o P = 11 (3.14)

[C1l=1

for a test-function f(¢). In other words, if function ¢(¢) on the unit circle ¢ € C,
|C] = 1, admits decomposition in the Fourier series, i.e.,

n—1
PO =Y en¢ ™ then o, = § L o), (3.15)

= 271
" ¢|=1

that means direct and inverse Fourier transforms correspondingly. We see that the
composition law (3.12) gives a kind of “deformed” Fourier transform. Moreover, in
the case where symbol F(my, z) of operator F is independent of z (due to (3.10)
this means that infinite matrix F' is diagonal) this law reduces to the composition
of the direct and inverse Fourier transforms, so that

FG(my, 2) = F(m1)G(my, 2) (3.16)
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for any operator GG. Thus operators with z-independent symbols play the role of

multiplication ones.
As useful examples we mention that for the unit and shift matrices (I and T

correspondingly) i, (m1) = 9y, 0 and t,(m1) = 6, 1, so by the above definition we
have for the symbols:

I(m,2)=1, T(m,z) =z (3.17)

Relation (3.10) shows that we use an analog of the normal order: all shift operators

are placed to the right from multiplication ones, that is confirmed by (3.16). Cor-

respondingly, let G be a function of the shift operator only, i.e., due to (3.10) and

(3.11) its symbol is independent of the discrete variable, G(my, z) = G(z). Then by
(3.12) we get

FG(my,z) = F(my,2)G(z) (3.18)

for an arbitrary F'. Similarity transformation by means of operator 7', as follows
from (3.12) and (3.18), gives a shift of the discrete variable

TFT-\(my,2) = F(my +1,2), ie, TFT™ = FO), (3.19)

where notation (3.5) was used. This relation is essential for construction below.
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4 Lecture.

4.1 Operator realization of elements of an associative algebra
(continuation).

On the set of these functions F'(m, z) we define the following linear operations:

complex conjugation: F*(m z) = ( ) (4.1)

t ition: F T — " 4.2
ransposition (m, z) f 27TZC n,C)(2¢"), (4.2)
Hermitian conjugation: Fl = (F T) . (4.3)

In what follows we consider set of “pseudo-matrix” operators F', G, ... given by
their symbols F G, . with the above composition law. We impose condition that

these symbols are tempered distributions with respect to their variables, or Fourier
coefficients of distributions. But in generic situation we do not expect any relation
of the kind (3.10) of these operators with matrices, in particular, we do not expect
any analyticity property of the symbols of operators with respect to the variable
z. Because of this one can introduce on this set operations that are well defined in
terms of symbols, but have no analog on the set of matrices. In particular, we define
operation of O-differentiation: F — JOF:

(OF)(m, 2) = %. (4.4)

This derivative is the measure of departure of the symbol of operator from analyticity,
so it also give a measure of departure of operator from the infinite matrix, i.e., from
situation when series in (3.10) converges. In particular, unit and shift operators, as
follows from (3.17) obey

ol =0, JT =0. (4.5)

We consider operators A and B as operators of the above kind with symbols A
and B. Dependence of the symbol of B on m;, BY = (A—a;)B(A—ay)"" is exactly
as the one under the similarity transformation (3.19) by means of operator 7'. Thus
we can set _

A=T+ay, ie, A(m,z) =z + a;. (4.6)

Then in correspondence to (3.7)

BW =TBT™', B® = (T + ay;)B(T + a12) 7},

4.7
B(g) = (T+a13)B(T+a13)_l, ( )

where notations (3.5) and (3.2) were used. Symbol B(my, mg, ms, z) of operator B
depends now on the three discrete variables, my, mq, ms € Z, besides the variable
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z. In what follows we use notation B(m, z), setting m = {my, ma, ms}. Dependence
on my and mg does not affect (3.12), where product of symbols must be considered
as pointwise with respect to these variables, so that

(FG)D = FOGO 1 =1,23, (4.8)

where for i = 1 this equality follows from (3.12).

4.2 Symbol of operator B.

Thanks to m-dependence of operator B specified in (4.7), its symbol can be presented

as
Blmo) = § grem(EEme) H(HEI) B g

Z+ aio Z+ ais
I¢]=1

where b((, z) is some function. It is reasonable to exclude its exponential growth with
respect to ms and ms. So we impose conditions |z 4+ ai2| = |z + aa, [2( + ai3]| =
|z + a3/, that are equivalent to either ( =1, or Z/z = (a12/a12 = (a13/a13. The first
condition leads to a trivial constant operator in (4.9), so we consider the second one
only. Because of it: @15/a12 = @13/a13, and thus (shifting phase of z, if necessary)
we can choose all a; to be real. This means that function b(¢, z) has support on
the surface ¢ = Z/z. In the simplest case b((, 2) = 6.(Cz/2)f(z), where 6. is the
d-function on the unit circle and R(z) is an arbitrary function of z € C. Then
representation (4.9) for the symbol of B becomes

~ z " Z 4+ aqs 2 zZ+ a3 s
B(m,z) = | - z), 4.10
( ) (z) (z—i—alz Z+ as /() ( )
Taking property of the m-dependent factor here into account, it is reasonable to
input condition that R(Z) = R(z). Then also

B(m,z) = B(m, z), i.e., B* = B, (4.11)

where notation (4.1) was used. In generic situation b((, z) in (4.9) can be proportional
to the finite sum of derivatives of 6.((), that we do not consider here in order to
avoid asymptotic growth of B(m, z) by m.
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5 Lecture.

5.1 Dressing procedure

The main object of our construction, dressing operator K with symbol K (m, z),
is introduced as solution of the d-problem:

0K = KB,
N 1
lim K(m,z) =1, (5.1)
Z—00

where product in the r.h.s. is understood in the sense of (3.12). Differential 0-
equation here due to (3.12) and (4.10) in terms of symbols sounds as

3 R (m, ) = B(m,7) (?)m (= )m (= al?’)msf<z>, (52)

z Z+ ape Z+ a3

so we can use the Cauchy—Green formula and write that inside any domain D

~ ! 2 — ~
K(m,z):—i%dz’wjtl/ d’z 9K (m,2").

27 z—2z T z— 2z
aD D

In order to get integral equation on K (m, z) we have to expand the domain D on
the whole complex plane, so that we have to impose some asymptotic condition on
behavior of this symbol at z-infinity. Notice that if it tends to some constant value
foo, then the first term here equals this constant. So setting asymptotic condition
in (5.1) we can extent domain D to the whole complex plain C, so that in terms of
symbols we get integral equation

K 122 [P R, 5.3
(m,z) = +%/z—z’ (m, 2"). (5.3)
This integral equation is equivalent to the problem (5.1) and can be used to prove
existence and uniqueness of solution of this problem. Here we do not go in this
details and we assume this unique solvability. This assumption is crucial for our
construction, but not essential for its results. As the first result of this assumption we
get that because of conjugation property of B (see (4.11)) we also have conjugation
property for the dressing operator:

K" =K. (5.4)

Let us consider an operator F' in our class of operators, such that its symbol F (m, z)
is entire function of z, i.e. OF = 0, see (4.4). Thanks to (3.12) we have that OF K =
FOK = FKB, so that FK obey the same differential equation in (5.1). Then we
get instead of (5.3) integral equation

— ~ 1 d*2 i~ ’ =
FK(m,z):F(m,z)+—/ J0K(m,z2"), OF =0, (5.5)

T z— 2
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assuming that the integral converges. Thus asymptotic behavior of the composed
operator F'K is determined by the asymptotic behavior of the symbol of operator F'.
Vice verse, due to assumption on the unique solvability of the problem (5.1) we see
that any solution of the equation 0G = GB with asymptotic behavior determined
by entire function F'(m, z) can be written as

G =FK. (5.6)

Indeed, difference G — FK obeys the same differential equation 9(G — FK) =
(G — FK)B but with zero inhomogeneous term, as asymptotics of this difference
equals to zero.

Dependence of operator K on variables m is introduced by means of the same
O-problem:

KV = KWRBL), lim K@O(m,2z)=1, j=1,2,3, (5.7)
where (4.8) was taken into account. But we have to check that evolutions of K
defined in this way are mutually compatible. We use here that compatibility of
evolution equations of operator B is obvious by construction. Then by (4.8) and
(5.7) OK®) = KGI)BEI) and KU = KUIBE) for any 4,57 = 1,2,3. Thus
difference K (7 — K% obeys J-equation in (5.1), but with zero asymptotic behavior.
So this difference equals to zero due to the assumption on the unique solvability.
Let us consider consequences of the equality (4.7) for operator K. Notice that this
operator, as any operator of the class under consideration obeys (3.19),

KY =TKT, (5.8)

that is compatible with (5.7) for j = 1 because of of the first equality in (4.7).
Consider now j = 2. Thanks to (4.5) and (4.7) we derive

KT + ayy)) = (KP(T + a12))B,

i.e., product K@ (T + a15) obeys the same J-equation but with asymptotics that
growth linearly at z-infinity. Thus thanks to observation in (5.6) there exists mul-
tiplication operator X —operator with symbol independent of the variable z—such
that K@ (T 4 a13) = (T + X)K. In order to determine this operator we have to
specify asymptotic condition in (5.1) by means of the next term of expansion,

K=I+uT""'+..., z—= oo, (5.9)

where dots denote terms with symbols decaying faster than z=!, and where u is a

multiplication operator. So in terms of symbols this can be written as

[?(m,z)zljt@—l—..., z — 00. (5.10)
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We assume below that u(m) decays rapidly enough at m-infinity:

lim w(m) =0, (5.11)

m;—00

while in fact it would be enough to impose condition that it tends to an arbitrary
constant.
Thus we get that due to (5.8)

KO(T + ayy) = KOT + (a5 + u® —uM)K, (5.12)

Analogous consideration shows that the evolution with respect to ms is given by
equation
KT + ays) = KOT + (a3 + u® —uM)K. (5.13)
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6 Lecture

6.1 Hirota difference equation

Thanks to (3.16) and (3.18) in terms of symbols relations (5.12) and (5.13) sound
as

(z 4 a12) K@ (m, 2) = 2KV (m, z) + (u(2) (m) —u(m) + alg)f((m, z), (6.1a)

(2 + a) K@ (m, z) = 2KW (m, 2) + (u® (m) — W (m) + ar3) K(m, 2),  (6.1b)

so that variable z € C plays the role of a spectral parameter. Equations (6.1) are
compatible by construction:

K® = g3 (6.2)

as we have proved on the previous lecture. Thanks to (5.12) and (5.13) direct check
of this compatibility gives
KT 4 ap)(T + ars) = (K@(T 4 a12)) (T + ar3) = KEVT

+ (a3 + apy — u™Y + u(2’3))K(1)T + (a1 + u® — ) (a5 +u® —uK,
KT + ay3)(T + arz) = (KT + a13)) (T + a1 2) = KW+

+ (ar3 +arg — u) +uENKOT 4 (a5 +u®® —uD) (a1 +u® — D)K.

Summarizing, we get that function u(m) obeys
(aro +u®Y —u) (a5 +u® —uM) = (a3 +u®® —u?) (a9 +u® —uV),
that can be simplified say as

u? (u® — u® + a) + aru® + u® (u® — u® + ags) + aggu+
+ulY () —u® + ag) + azu® =0, (6.3)

so that the original Eq. (3.8) is its linearized version. This is one of forms of the
Hirota difference equation. Thus by means of our dressing procedure we arrived
to nonlinear counterpart of the original linear equation on operator B. Moreover,
we constructed Lax representation (here it is better to use term ‘“zero-curvature
condition”): equations (6.1a), (6.1b) on an auxiliary (in a sense that it does not
participate in (6.3)) function K (m, z). It is easy to check that now we can forget
about condition of unique solvability of the problem (5.1) that was so essential in
derivation. Indeed, equivalence of (6.3) and compatibility condition does needs no
any assumption and can be checked directly.

For the following it would be reasonable to simplify notations. For shortness we
introduce a new dependent variable

v(m) = u(m) — miay — maas — mzas, (6.4)
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so that ‘ ‘ ‘ ‘
@ ) = @) _ 4, G) 4 aji, (6.5)

that substitute combination that appeared in equations above. In particular for the
Hirota difference equation instead of (6.3) we get

v (0 — @) £ 23 (@ — 3 4G () Wy = g, (6.6)

that is the more standard way to write down the Hirota difference equation. Notice
that while constants a; are absent in (6.6), by (6.4) they determine the asymptotic
behavior of v(m): this function grows linearly with respect to m at infinity. Thanks
to (6.5) this means that asymptotically
' @) _ DY = .

ml%n_)oo(v o)) = ay;. (6.7)
Let us mention that this asymptotic behavior cancels ill definiteness of (6.6). Indeed,
consider the Cauchy problem for the (6.6):

U(ml,mg,()) = Uo(ml,mg), (68)

where vg is some given function. This Cauchy problem has two trivial solutions:

either v® = oW, or v® =@, (6.9)

But it is just condition (6.7) that forbids this equalities thanks to (3.2). Below we
show that in our case such Cauchy problem is uniquely solvable.
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7 Lecture

7.1 Jost solution.

We continue to change notations. We define the spectral parameter k as
k=z+4a, (7.1)

(cf. (4.6)) that makes relation above more symmetric. And we introduce two more
functions:

x(m, k) = K(m, k — ay), (7.2)

o(m, k) = E(m,k)x(m, k), keC, (7.3)
where

E(m, k) = (k—a)™(k —ag)™(k — a3)™, (7.4)

Function ¢(m, k) is called Jost solution—Jost was the first to realize that in study of
the spectral problem for the Schrédinger equation it is useful to introduce functions
that admit analytic continuation in the complex domain. In our case instead of
analyticity we have d-problem (5.1). Formally it (strictly speaking, (5.2)) can be
written for the Jost solution as

dp(m, k) —
S rkyp(m. ) (7.5)
where
r(k) = f(k+ a). (7.6)

Notice that (7.5) does not contain dependence on variables m;: it appears only due
to the asymptotic condition in (5.1). So it is better to write equations on Yy, that
also follow from (5.2):

ox(m,k)  E(m,k) —
o Em k)r(k‘)x(m, k), (7.7)

lim y(m, k) = 1. (7.8)

k—o00

Equations in terms of this function looks to be more complicated then in terms of
the function ¢, but in the discrete case considered here the latter one, Eq. (7.5), is
correct only for all m; > 0. Analog of function y was also introduced in the study of
the spectral problem for the Schréodinger equation by Faddeev, so it is often referred
to as Faddeev function.
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We list here some properties of these functions that follow from the previous
results. Thus for any k € C we have that

p(m, k) = o(m,k),  x(m,k)=x(m,k),  r(k)=r(k), (7.9)
x(m, k) =1+ % +o(k™), k— oo, (7.10)
w(m) = u(m). (7.11)

In terms of the function x(m, k) equations of the Lax pair take the form
(k—a2)x®(m, k) = (k —a)x"V (m, k) + (u®(m) —uM (m) + a12) x(m, k), (7.12a)

(k—as)x®(m, k) = (k—ay)xY(m, k) + (u(?’)(m) —uM (m) + ar3) x(m, k), (7.12b)
(k—as)x®(m, k) = (k—a)x® (m, k) + (u(?’) (m) —u® (m) + ags) x(m, k), (7.12¢)

thus preserving invariance with respect to the cycle permutations of the indexes
{1,2,3}. For the Jost solutions themselves we have Lax pair of HDE being given by
any two of the following three equations

P = oM 4 (@ — W), (7.13a)
0B = @ 4 (U(3) — U(2>)% (7.13b)
M = 0@ 4 (1D — @), (7.13c)

Thus passage from y to ¢ cancel explicit dependence on k, it appears due to the
normalization condition (7.8) only. It is easy to check that the HDE is condition of
compatibility for any pair of equations with respect to all three variables m;. At the
same time Eq. (6.6) can be considered as an evolution equation, where, say, m; and
mo play role of the space variables, and ms is the time one.

7.2 Direct problem: Green’s function and Jost solution

Let us prove that equation (7.12a) can be written in integrable form like:

x(m, k) =1+ Z G(m —n, k) (u®(n) —uV(n))x(n, k), keC, (7.14)

n1,n2€Z

where the Green’s function is equal to

dcy dce et
— . 1
k) % 27 7{ 2m —ag)Ce— (k—a1)¢1 +as — ay (7.15)
IC1|=1 [C2|=1
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For this sake we use (7.14) to write down
(k —az)x® (m, k) — (k — a)x™ (m, k) = aro+

dCl d<2 ((k - a2)<2 - ( - Cl,l)<l) m1—n1—1 2”7'2—712—1
+ 52
Sf it )

ICi|=1 27 o<1 27 (k—a)le— (k—a1)(1 +as—ay
x (u®(n) —uM(n))x(n, k) =

d d
ot Y B f S i ) O+

ni,ne

e |=1 |Ca|=1
d d mi1—ni1—1 mo—na—1
+ag Z j{ Cl % ﬁ 1 2 %
iy -1 211 |Cal=1 21 (]{3 — CLQ)CQ — (]{3 — a1>C1 +as — aq

% (u®(n) — u®(n))x(n, k) =
= arz + anz(x(m, k) — 1) + (@® (m) — u!V (m))x(m, k).

Denominator of the integral in the r.h.s. of (7.15) has zeros in the two cases only:
where

k—a k—a
G=G¢=1 o (= L = 2

k—a1 k—ag’

(7.16)

so the integral converges and defines G(m, k) as distribution with respect to k. Any
of these representations show that the Green’s function has properties of conjugation

— k—a1 mi k—ag ma2
Gm,k)=G(m, k) = (= = G(m,k 717
R =GB = (=) (7=.2) Gonb) (7.17)
and antisymmetry
G(ml, mao, ]{7) = —G(m2, my, k) (718)
Say, we use here:
mi1—1,mo—1
O "G _
=1 270 Jigy1 270 (K — a2)Ce — (b — )G + a1 — ap
k_ mi1—1 k— mo—1
_ ay as %
<E_a1) <E—a2>
E—al m1—1< E—a2)m2_1
f sy (i) (e
=1 270 Jiy =y 2 k—a k—a
PR TEET —w)p = 26— (e - a
— a

:<ﬁ_m) (ﬁ_@) G(m, k).
k—al ]{Z—CLQ
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7.3 Properties of the Jost solutions

Here we study properties of the function y(m, k) defined by equation (7.14), in
which connection we assume below unique solvability of this equation. Because of
(7.17) reality of the potential u(m) is equivalent to condition

x(m, k) = x(m, k), (7.19)

while second equality in (7.17) shows that function

W) = (1=2) 7 (22) ) (7.20)

k—al k‘—a,g

obeys integral equation

o= () (=2)
+ 3 Gm—n, k) (w®(n) = uD(n)X(n, k), -~

ni1,no€ZL

i.e., equation with the same kernel as in (7.14).
Asymptotic behavior of x(m, k) follows thanks to equations (7.14):

lim x(m, k) = lim  x(m,k) =1, (7.22)

k—o00 |m1|+|ma|—o0

and for the second term of 1/k expansion we get

k(x(m, k) —1) —
A GG ) W () —
%THZHQ%” 127” ﬁzzl% G—G (u (n) —u (n)) =
dCl d(s Clml_"l—l 2m2—n2—1
- nlznz ﬁﬂ 1 2mi f;:l % C2 — Cl (u(n)g2 - u(n)gl)’
so that
Jim k(x(m, k) —1) = u(m). (7.23)

This limiting values is independent of the half plane where k£ — oo. It is worth to
mention that from the difference equation (7.12a) we get the asymptotics behavior in
the form k(x® (m, k) — xM (m, k)) — u®(m) —u (m) only. In fact it is equivalent
to (7.15) thanks to the asymptotic decaying of the potential and the second equality
n (7.22).
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8 Lecture.

8.1 Time evolution and Inverse problem

Time evolution, i.e., dependence of y(m, k) on ms is switched on by means of (7.12b)
and for the Jost solution itself it follows by (7.3). Let us introduce scattering data
and find out their evolution. The departure from analyticity of x(m, k) is given by
the O-differentiation of Eq. (7.14), so that we have

ox(m,k)  (k—a\™ (k—a\"™
u _<k—a1) (k_@) r(k,ms)+

+ > Gim—n,k)(u®(n) — u®(n))

ni,ne€Z

ox(n, k)
" (8.1)

Here we introduced scattering data r(ms, k) defined by the equality
sgn Im k "
2mi(k — ap)(k — ay)

<3 (L) (E2) @ - o mim k). 62

k:—al k‘—ag

T(mg, k) = —

m1,ma€”Z

Because of Eq. (7.19) (i.e., because of reality of the potential u(m)) we have that
r(k,m3) obeys B

T(mg, k) = T(mg, k) (83)
Under assumption of the unique solvability of the problem (7.21) we get by (8.1)
that dOx(m, k)/0k = r(mg, k)x(m, k), or thanks to (7.20) that

() (50) e

_ Time evolution of the spectral data, i.e., dependence on mj trivially follows from
O-differentiation of the equation (7.12b) of the Lax pair, and (8.1):

k’—a,g

r(ms, k) = (E - ag)mgr(k), (8.5)

where function r(k) is independent of ms and by (8.2) is uniquely defined by the
initial data.
Summarizing, the inverse problem to determine x(m, k) is given by the equation

Ix(m, k)
ok
with normalization condition (7.8). Here we denoted

R<m,k;):(E_“l)m(E_“Q)W(E_“?’)mgr(k), keC.  (87)

k—al k—a2 ]{7—&3

= R(m, k)x(m, k) (8.6)
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For any r(k) this function obeys the linearized version of the Hirota difference
equation. We also mention that because of (8.5)

|B(m, k)| = |r(k,ms)| = |r(K)], (8.8)

i.e., |R(m, k)| is independent of m.

8.2 Integrals of motion

Let us introduce function

o) = 3 (@m) = u(m))x(m, ). (59)
mi,maE€Z
Thanks to the asymptotic decaying of the potential u(m) and boundedness of the
function y(m, k) by m this series converge and function p(k) decays when k — oo.
It obeys conjugation property B

p(k) = p(k) (8.10)
thanks to reality of the potential. For the 0-derivative of this function we get

%) _ oy ()™ 5 (E) ™ (E Y 0 st oo .

m1,maE€Z
Thanks to (8.2) and (8.5) we have

_ sgn Imk (E — a3>m3
27TZ(/€ — al)(k - 0,2)

3 () () o m) — ol ) .

k—a1 ]{Z—CLQ

r(k) =

k’—ag

mi1,mo€

so that combining results of these two relations we get

ag—(;) = —27i(k — a1)(k — a2) sgn(Im k) |r(k)|*. (8.11)

Now taking (7.8) into account we get that in terms of the scattering data function
p(k) is given by equality

/! /I
(k) = —2i / s Zl)_(’;;, a2) sen (Tm &) [r(K') 2, (8.12)
where dk? = dRe k Im dk. Thanks to Eq. (8.11) this proves that p(k) is independent
of time mg3 and it is the generating function of the infinite set of integrals of motion.
Thus thanks to relation (7.23) the first nontrivial integral (the first coefficient of 1/k
expansion) is

pr= 3 (W®(m) —u®(m))u(m) =

ni,ne€Z

_ 9 / PR (K — ar)(K — az) sgn(Im ) [r (k) 2. (8.13)
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9 Lecture.

9.1 Higher Hirota difference equations.

An obvious way to introduce new discrete independent variables in HDE is to
enlarge number of evolution equations of the kind (3.7), i.e., to introduce in addition
to the discrete variables {mj, my, m3} as many another variables {my, ms,...} as
one wants, so that dynamics with respect to any of them is given by means of
B® = (A—a;)B(A—a;)~", where a4, as, . .. are different (real) parameters. All these
evolutions are mutually compatible and compatible with the original variables, but
their definition shows that for any 4, j, & we have an analog of (3.8) (see also (3.2)):

aij{B(ij) + B(k)} + cycle{i, j, k} = 0.

Then we get that with respect to any three variables m;, m; and my function
u(my,...) defined in (5.9) and function v(m) = u(m) — > . a;m; (cf. (6.4)) obey
the same HDE. Thus this “extension” is trivial one and can be interesting only for
the study of symmetries of the HDE.

Thus in order to get higher analogs of the HDE, we have to consider higher
analogs of the similarity transformations (3.7). Let p; = pi(T), i = 1,2,3, be
polynomials of operator T' of the orders n; with constant coefficients, i.e., symbols
pi(m, z) = p;i(z) are polynomials of z € C. We set also that all these polynomials
has simple and mutually different zeros and that the coefficients of the highest
powers equal to I. As before, we consider operator B with symbol B(my, may, ms, 2)
depending on discrete variables m; € Z, but now dependence on these variables is
given by

BY =p,Bp;t, i=1,2,3, (9.1)

instead of (3.7). Notice, that due to condition on the polynomials p; we can write
every of them as

n(m) = [I( - ) (92
j=1
so that shift with respect to i-th variable by (9.1) is equivalent to the n; shifts in
the sense of (3.7). Nevertheless, derivation of evolution equations (9.1) by means of
such multidimensional reductions is very complicated even in the linear case, so we
construct nonlinear equations on the base of (9.1) directly. To be consistent with
the shift with respect to p;(T") we choose

p(T) =T. (9.3)

The dressing operator K is defined by the same J-problem (5.1) and its depen-
dence on m; is given by (9.1). Then, as before, under assumption of the unique
solvability of the (5.1), there exist polynomials P;(T") such that

K9p, = PK, i=1,2,3. (9.4)
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Let us write . .
T)=) y,;T7, P(T)=> YyT’, (9.5)
=0 =0

where y; ., = Y, = 1 and where all y;; are constants, while Y;; are multiplication
operators, Y;;(m, z) = Y;;(m). Then (9.4) takes the form

KC ZyUTJ ZYUK“J . i=1,2,3. (9.6)
7=0

Here we introduced notation (cf. (3.19)):

RO (g ma, ..., 2) = K(my + j,ma, ..., 2). (9.7)

Equation (9.6) can be simplified being written in terms of the Jost solution (cf.

(7.3)) N
p(m, z) = K(m, 2)p1(2)™ pa(2) " ps(2)™, (9-8)
that gives by (3.17), (9.6) and (9.7)

0@ (my, mg, mg, z) = ZYi,j(m)@(ml + J,ma2, m3, 2). (9.9)

Representation of the symbol of operator B follows from (9.1) in analogy to (4.9):

s = § e (55) () ven

I¢1=1

where b((, z) is some function. In order to prevent growth of the symbol with respect
to mg or ms, we impose condition |p;((z)| = |pi(2)|. Moreover, for simplicity we take
that polynomials p;(z) has real coefficients and b((, z) = 0.(Cz/Z) f(z), where 6.(C)
is d-function on the unit contour and f(z) is an arbitrary function of z € C. Then
in analogy to (4.10) we get representation

- )" ()" (™
B(m,z)=| — f(2). 9.10
ma=(3) (25) (5) 1@ 10
By assumption of unique solvability of problem (5.1) we derive that evolution
equations (9.4) (or (9.6)) are compatible:

K00 — ) (9.11)

for any ¢ and j. This compatibility enables to derive discrete version of the Zakharov—
Shabat system. Indeed, thanks to (4.8) and (9.4)
K(i’j)pipj = P(])K(j)p] = Pz(])PjKa i, =1,2,3. (912)

(2
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Taking that polynomials p; and p; with constant coefficients commute into account
(see (3.18)), we get that the Lh.s. is symmetric with respect to i and j thanks to
(9.11). Then the r.h.s. gives

PYP = PP, 1<ij<3, (9.13)

Vice verse, (9.11) follows from (9.13). Discrete version (9.13) of the Zakharov—
Shabat system enables derivation of evolution equations on coefficient functions
of polynomials P;.

9.2 An example of the higher Hirota difference equation.

Here we consider an example of the higher equation closest to HDE. Let dynamics
of operator B in (9.1) be given by means of polynomials

p(T) =T, po(T) =T + a1, ps3(T) = (T'+ a1)? — a3, (9.14)

where (9.3) was taken into account and where a;, as and a3 are real constants,
a1 = a1 —ag # 0, ag # 0,+as. Let us denote the first difference of operators as
A;B = B% — B. Then operator B obeys difference equation
[(Alal — A2a2)2 — CL%(Al — A2)2] AgB =
= algAlAg (CngAlAQ + 2A1a1 - 2A26L2)B, (915)

that follows from a corresponding commutator identity. It also can be checked
directly since here (9.10) takes the form

B(m,2) = (3)7” (z * “12>m2 <(§ ) - a§>m3f(z). (9.16)

z Z+ aq (z+a1)? — a3

The dressing operator K is defined as always by (5.1), so that by (9.5):

PAT) =T + Y, (9.17)
Py(T) =T? + Yy T + Yo, (9.18)

where symbols of operators Y;; are independent of z. Then by (9.6) the Lax pair is
given in the form

KO(T + ayy) = KOT + Yy K, (9.19)
KO(T 4+ a)? —a2] = KOYT? 4 Y KWT 4 Yy K, (9.20)
where coefficients obey
Y +Yag = Yao + Va7,
Yag) + Yoo Yoy = Yag) + Va1 Yo, (9.21)
Yoy Yao = Vi Yoo,
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due to (9.13) and (9.17), (9.18).

Taking symmetry of this reduction with respect to variables m; and ms into
account it is reasonable to rewrite (9.20) in the explicitly symmetric form by means
of (9.19). Thus we get

KP(A—ay) = KW(A - ay) + YK, (9.22)
K(g) [A2 — ag] = K(1’2)(A — al)(A — a2)+
+X31 (K(l)(A— al) +K(2)(A— a2)> —I—XgoK, (923)

where again for the sake of symmetry we used (4.6) and where new coefficients equal

1
X3 = 3 (Vs — Y2(01))7 X3o = Y + Xg1 Yy (9.24)

In these terms relations (9.21) also take symmetric form

Yay =Y + 22X — 2x§), (9.25)
3 2 1 2)< (2 1) (1

2Yz(o)Xsl = X?Eo) - X?Eo) + X?El)Yz(o) + X?E1)Y2(0)a (9-26)
3 2 1 2)+ (2 1) (1

2Yz(o)Xso = [X?Eo) + X?Eo) + X?E1)Y2(0) - X:’E1)Y2(O)]§%- (9-27)

Coeflicients Y;; (or X;;) must be defined by substitution of asymptotic expansion
in (9.19) and (9.20), or (9.22), (9.23). In order to preserve above mentioned symmetry,
we use here the latter two equations and taking (4.6) into account we write the
expansion in the form

K=T+uA'+wA2 4., (9.28)

where symbols of operators u and w depend on variables m only. We omit here
details of computations and in order to present their results introduce functions

v(m) = u(m) — mya; — maas, (9.29)

f(m) =w(m) — (miay + maaz)u(m)+
+ %(mlal + mgay)? — % — m%a% — m3az. (9.30)

Then inserting (9.28) in (9.22) and (9.23) we get

Yoo = 0@ — oW, (9.31a)
FO = U = Yagu, (9.31b)
Xa = %(v@’) — 1), (9.31c)
Xag = f® — fO2D _ Xg (0@ 4 @), (9.31d)
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10 Lecture.

10.1 An example of the higher Hirota difference equation
(continuation-2).

Thus three functions Y5y, X3¢ and X3; are given in terms of two functions v and f
and must obey three equations (9.25)—(9.27). As we mentioned above this system is
compatible. In particular, it is easy to check that (9.25) and (9.26) become identities
due to (9.31a)—(9.31c), and (9.31d) reduces to

va [ — 1D _ @@ 4 y@0.2)]
1) [0 faz 3) <>+U<1> (127 =
N(F? + (fY = o) —
—(f® )(1 (Y~ v( Jo) 2], (10.1)

that gives one equation on two functions. These functions are not independent, as
thanks to (9.31a) and (9.31b)

FO @y = ) ), (10.2)

Equations (10.1) and (10.2) are equations of the integrable system, that give an
example of the higher HDE. This system follows as condition of compatibility of the
Lax pair (9.22), (9.23) that in terms of the Jost solution (cf. (9.8)),

o(m, k) = K(m,2)2™ (z + a12)™[(z + a1)? — a2]™, (10.3)
reads as
@ = oM 4 (4@ _ W)y, (10.4)
S = 02 () _ U<172>)M+
[ = g2 - L @)@ a2y, (10.5)

2

where (9.31) was used. Omitting details we mention that thanks to (10.4) equation
(10.5) can be written in the form

o — Spa D 4 (08 — yGD) 0 4
F O = f02 (@) 12, (10.6)

that together with (10.4) gives the equivalent Lax pair.

Thus three functions Y5y, X39 and X3; are given in terms of two functions v and
f and must obey three equations (9.25)—(9.27). As we mentioned above this system
is compatible.
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We considered a method of derivation of nonlinear (difference) integrable equati-
ons and their Lax pairs. Our construction was not free of assumptions, first of all the
assumption on unique solvability of the d-problem (5.1) and assumption of existence
of the asymptotic expansions (5.9). These assumptions were extremely essential for
our derivation. On the other side, when Lax pairs are derived check of compatibility
of its equations is purely algebraic operation, that needs no any assumptions and
lead to integrable nonlinear equation. Say, higher HDE, i.e., system (10.1), (10.2) is
condition of compatibility of (10.4), (10.5), that can be checked directly.

In a general situation considered in (9.1) existence of the corresponding commu-
tator identity is equivalent to existence of a polynomial Q(z1,xs, x3), such that

Q(Ady, Ads, Ads) = 0, (10.7)

where we denoted adjoint action of operator 7" on the associative algebra discussed
in Introduction as

Ad;B = pi(T)Bp;(T)™', i=1,2,3. (10.8)

Here B is an arbitrary element of this algebra, but if we switch on its dependence on
variables m; by means of (9.1), BY = Ad; B, we get by (10.7) closed linear equation
on B(my, ma, ms), cf. (9.15). This argumentation and construction presented in this
article show that it is natural to suppose that the only linear difference equations in
(2+1) dimensions that can be lifted to nonlinear integrable ones are those that can
be presented in the form of commutator identities. Notice, that in this discussion
relation (9.3) was not used.
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11 Lecture.

11.1 (1-+1)-dimensional reductions of the HDE

We demonstrate that approach based on commutator relations leads to integrable
equations in (2 + 1) dimensions. In order to get (1 + 1)-dimensional integrable
systems one has to perform reductions. Following idea of our approach, we start
with construction of reductions of linear equation (3.8) on B and then apply dressing
procedure to get nonlinear integrable systems. Thus in this case dimensional reduction
is understood as a relation between values of operator B given by some shifts of
independent variables m;. Such relation must be compatible with (4.10) and must
preserve dependence of B on two independent variables.

Thanks to (4.10) it is easy to see that any such reduction leads to an equation
on the spectral parameter z: it had to belong to a some curve on C. This is possible
only if function f(z) in (4.10), and then B(m, z) itself, have support on this curve,
that here for simplicity we consider as proportionality to a corresponding ¢-function.
But then (5.2) means that symbol K(m, z) is analytic function outside this curve,
so the inverse problem (5.1) must be substituted by the standard Riemann—Hilbert
problem.

11.2 Reduction B®3) = B.

We start with condition B3 = B. In terms of symbols this reduction gives:

B(ml,m2,m3, Z) = B(ml — ms, ma, 0, Z)v (11-1)

that due to (4.10) is possible only if zr, = —a13/2 (we omit the trivial case z, = 0).
Setting here for simplicity
az = —daq, (112)

we see that the above reduction require proportionality of a symbol B to d-function
d(2re + a1), so that by (4.10)

B(ml,mQ, 07 Z) =
. mi . mo
_ (g) (g) bem)d(zme +a1),  (11.3)
a] — 12m a2 — 121m

where b(z1y,) is an arbitrary function of its argument (Scattering Data). Operator B
with this symbol obviously obeys equation

a12(BY? — B) + (a1 + ap)(BY — B®) =0, (11.4)
while the corresponding reduction of the original Eq. (3.8) gives
ar2(B"? — B) + (ay + ay)(BY — BY) =
— [a12(BY? = B) + (a1 + ag)(BY — B@)] ™.
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Both sides of this equation are independent of my, so (11.4) appears as result of its
summation. B

Let us emphasize that because of (5.1) symbol K (m, z) of the dressing operator
is analytic function of z € C in half planes zg, = —ajy.

Thanks to (3.12), (5.1) and (11.1) we get that also K(1? = K i.e.,

K(my,mg,mg, 2) = k(ml —my,0,mg,2), ze€C.
Thus equation (6.1a) of the Lax pair is unchanged, while for (6.1b) we have
(z 4 2a)) K (m, 2) = 2K (m, 2)+
+ (v(m) — vV (M) KD (m, 2). (11.5)
Thanks to (5.9) also u(my, mg, m3, z) = u(my — me, 0, mg, ). Relation (11.2) gives

the same dependence of v(m) on m; —mg and my. Because of this specific dependence
on m we have to modify definition (7.3) of the Jost solution:

(my —ms,mg, k) = K(m, 2)2™ 7™ (2 + a13)™, (11.6)
where we denoted
k:Z+CL1, (117)

that in fact is the symbol of operator A, see (4.7). Thus setting now mz = 0 we
write:
v(m) = v(my, ma) = v(my, ma,0) — aymy — agma, (11.8)

so that equation (7.13c) is left unchanged, ¥ = »® + (v2 — M)y, and (11.5)
and the Lax pair itself takes the form
Pt = (Y =) + (k- )y, (11.9)
P = (@ =) + (k - )y, (11.10)
where ¥(!) in the second equality was substituted by (11.9).

Equation of compatibility of this pair can be derived either directly, or as reduction
of (6.6) and reads as

(0™ = 0) (0@ — M)V = (12 — ) (@ — ). (11.11)

Thus multiplication operator in the r.h.s. (or Lh.s.) has symbol independent of m;.
Taking (11.8) and decay of function u(m) at m; — oo into account we have that

v@(m) — &V (m) = +as, (11.12)
in this limit. Thus (11.11) gives
(01?2 — ) (v® — W) = a2 — @, (11.13)

Eq. (11.13) is known as the discrete potential KdV equation. It was derived by
F. Nijhoff et al (1984) and was discussed in detail in literature together with its non-
Abelian generalizations. Here we provide derivation of this equation as an example
of dimensional reduction in the framework of our approach.
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12 Lecture.

12.1 Reduction B®) = B1.2),

This 1 + 1-dimensional reduction of HDE preserves its specific property: symmetry
with respect to independent variables. Let for simplicity

as = a1 + ag, (121)

then thanks to (4.10) this reduction means that z must obey condition 2z — (z +
E)CLQ — Q9019 = O, i.e.,
|z — as]® = aya,. (12.2)

In other words, symbol E(m, z) must be proportional to d-function on the circle
(12.2), so here aja; > 0, and symbol of the dressing operator is analytic inside and
outside of the circle (12.2). Notice also that thanks to this reduction symbols of
operators B and K obey conditions

E(ml,mg,mg,z) zé(m1+m3,m2+m3,0,z), (12 3)
I?(ml,m%mg,z) :k(m1+m3,m2+m3,0,z), '

so by (5.9) the same is dependence of u(m) on variables m;, and due to (6.4) and
(12.1) the same is valid for function v:

v(ml,m2,m3) = v(m1 + mg, Mg + Mg, O) (124)

We see that equation (5.12) is unchanged under this reduction and (5.13) reduces

to
(z — ag) K8 (m, 2) = 2KV (m, 2) + (02 (m) — oV (m)) K (m, 2),

where now m3 = 0. We introduce the Jost solution (cf. (7.3)) by means of relation

P(my, ma, k) = K(my,me,0,2)2™ (2 4 a12)™?, (12.5)

k= i( L %) (12.6)

a12 \ 2 + a2 y4

where

is the spectral parameter. Finally, for the Lax pair we get

Y@ — M = (@ — Wy, (12.7)
k32 = M 4@ 4 (2U(1,2) — oM U@))w’ (12.8)

and corresponding nonlinear integrable equation reads as
(v (0@ — ) + vv(z))(l) = (v (oM — ) + vv(l))(2), (12.9)

that is equation of a 14 1-dimensional chain with discrete time evolutions, symmetric
with respect to both independent variables.
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12.2 Reduction B®) = B(-1.-2)

This is another reduction that also leads to the symmetric chain. Repeating the
same argumentation as above, we get that

B(m, z) = B(my — ms, mg —mg, 0, 2), (12.10)

that means the symbol B (m, z) is proportional to §-function on the hyperbola given
by the equation 3(zgr. + a1)* — 22, = (a1 + a2)? — ajas. Omitting other details we
present here the corresponding nonlinear equation only:

12 (5D _ @) _ 12 (D) _ 2y — D (D) _ (-1, @) (12.11)

12.3 Reduction B® = B.

The system (10.1), (10.2) admits (1+1)-dimensional reductions. Indeed, thanks to
(9.16) this reduction means that symbol B(m, z) is different from zero if (z+a;)? =

(2 + ay)?, i.e., 2rRe = —ay, so that function f(z) in (9.16) must be proportional to
0(2Re + @1):
~ ai + iZIm m a; + ’éZIm e
B = 0(2Re m)- 12.12
(m, 2) <a1 — izlm> <a1 — izIm) (2Re + a1)7(21m) ( )

Then the inverse problem (5.1) shows that the dressing operator is not only indepen-
dent of mg, but its symbol K (my,ms, z) is analytic function of z when zgr, # —a;.
In order to get reduced Lax pair and nonlinear equation, notice that coefficients

of asymptotic expansion (9.28) are independent of mg, i.e., u(m) = u(mq, ms),
w(m) = w(my, my). Correspondingly, by (9.29) and (9.30) v(m) = v(my,ms),
f(m) = g(my, my) —ajms, where g(my, ms) = f(my, my,0). Inserting these relations
in (10.1) and (10.2) we get nonlinear integrable system

(g — p@ )12 L (gl D02

(g — o@)D _ (g0 _ D)@
— (g% —vPv) — (g — W) 4+ 29 — 20(v® + @) =0, (12.13)

g® @y = g0 _ 0y, (12.14)

Taking that now symbol K (m, z) is independent of mg into account we define the
Jost solution by means of equality

I @(m> Z)

w(my,ma, z 4+ a1) = K(m, 2)2™ (2 4+ a12)™ = o a)— ol (12.15)

see (10.3). Thus we get from (10.5), (10.3) the reduced Lax pair:
PO 4 (v — B ® 4 (g — gD — W (y — B2 ]h = N2ep, (12.16)
@ = O 4 (v — W), (12.17)

where the spectral parameter A = z + ay, see (11.7), was used.
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13 Jlekmus

13.1 Soliton solutions

Soliton solutions for the Hirota difference equation are well known in the literature.
Let we have two numbers N,, N, > 1, and set of N = N,+ N, real parameters s, that
we can choose to be ordered: s < 360 < --- < 2. Let x(m, k) be a meromorphic
function of k that has poles at points k = s,,,..., Ky, » where {ny,...,ny,} is a
subset of {1,..., N}. Let us rescale the Jost solution,

N,
x(m, k) = x(m, k) Hk: ;) (13.1)

so that the new one is a polynomial of order £ with the unity coefficient at higher
power. Thanks to (7.23) we have

Ny
x(m, k 1
(ko ) _ 1+E(u(m) =S ) (13.2)
j=1
Thus
Ny
X(m, k) = kN 4+ " KTIX (1, m), (13.3)

where X (I, m) are some coefficients to be determined. For this aim we use (7.3) with
function x(x, k) substituted from the latter equality. Then on values of the Jost
solution at points k = ¢, ..., %y we impose N, conditions:

(¢(m,301),...,0(m, sy))D = 0. (13.4)

where D is matrix of the size N x N, with at least two nonzero maximal minors. This
condition gives linear system of equations to determine uniquely X (I, m). To describe
solution of this system we use here the following notation: let V' be incomplete
Vandermond matrix of the size (N, + 1) x N,

V=1": : , (13.5)

N, Ny
wt L Ky

and V(I) is matrix V with removed [-th row (i.e., matrix of the size N, x N). We
also need two diagonal (N x N)-matrices (see (7.4)):

E(m) = diag{E(m, s¢1), ..., E(m, xy)} (13.6)
k — = diag{k — se1,..., k — »n}. (13.7)
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Let also Y (I,m) denote determinant of (N, x Nj)-matrix
Y (l,m) = (=)=t det(V (1) E(m)D). (13.8)

Then it is easy to see that

Y (l,m)
X = — Y =Y (N, +1 13.
(I, m) Yim) (m) =Y (Ny +1,m) (13.9)
Now using (13.3) we readily get that
_ Z(m, k)
where
Z(m, k) = det(V (N, + 1)(k — ) E(m)D), (13.11)
and notation (13.7) was used. Thanks to definition (13.2) we get
Ny
o Y(Nbv m)
u(m) = ; ) (13.12)

As an example of this generic construction we present one-soliton solution:

o — M

u(m) = W,

(13.13)

where ¢ a real constant and

f(m) = E(m, s) <%2—a1)m1<%2—a2)m2<%2—a3)m3. (13.14)
E(m, %1) 1 — ay 1 — a9 » — as

Already this example shows that the consideration here was formal in the sense
that denominator in (13.12) (i.e., 7-function) can take zero values, so solution can
be singular for some values of m. Strictly speaking soliton solutions do not fit in
the class of solutions for which the IST was developed in the previous sections.
Soliton solutions interpolate between different constants on the m-infinity and one
has to develop version of the IST that enables consideration of such solutions.
Another property, specific for the soliton solutions of the Hirota difference equation is
existence of a resonant solitons, i.e., solitons where parameters s¢; coincide with some

of parameters a;, as, az. One soliton solution (13.13) shows that in the corresponding
limit solution exists, but its properties can be rather strange.
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14 Limiting cases

It was mentioned above that equation (3.1) becomes trivial in the limit when two of
three parameters a; coincide. Another kind of trivial case takes place when one of
these parameters tends to infinity. Thus we have to consider the first nonvanishing
order of the corresponding asymptotic behavior, that leads to new commutator
identities and, then, to another integrable nonlinear equations. In both these limits
we get that similarity transformations of the kind (3.7) becomes commutators in
algebraic sense. In terms of equation that means that instead of discrete equation
(3.8) we arrive to differential-difference, or difference equations. More exactly, let us
consider limit of some a; — a;. We write

a; = a; + I'bij, (141)

where b;; is an operator commuting with 7" and all ay, and z is a c-number parameter.
Then in the limit z — 0 we get

(A—a;)B(A—a;)"" = (A—a)(B—a[bij(A—a;)"", B])(A—a;) " +o(z), (14.2)

that means that we can introduce continuous variable, say ¢;;, by means of the

commutator relation
8%.3 = [bZ](A — ai)_l, B], (143)

and to write (14.2) as
BY — BY — 2B + o(x). (14.4)

In order to consider the limit of some a;, — oo we substitute a;, — ray, where x
is a c-number, and assume that a; is invertible. Thus we get

1
B® =q, {B — —Btk] a;t +o(l/z), x =00 (14.5)
€T

where

B;, = [Aa; ", B] (14.6)

k

Combinations of these limiting procedures gives another integrable equations. In this
way we get equations that follow from the non-Abelian Hirota difference equation.
As these limits are the only singularities of Eq. (3.1) we can get the total list of
such equations. Every limit described above substitutes for some discrete variable a
continuous one. The final step from differential-difference equation (with one discrete
variable) to differential one can be done by e*P, where D is a differential operator
with respect to some new variable, as substitute for 7" and expansion in powers of
the parameter x. These limiting procedures can be done in terms of the commutator
relations and linear equations for B with forthcoming dressing procedure. As we
show by examples below, this order of operations is much easier, if to compare to
the same limits just in the nonlinear Hirota equation itself.
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14.1 Limit a3 — oo

We start with the k = 3 case of (14.5). Inserting B®) from (14.4) into (3.1) we see
that in the zero order of = there appear a trivial equality, while the terms of the
1/z-order give equation

B(12)CL12 + CL3(B(2) — B(l))tS + CLQB(I) — alB(2)+
+ agB(2)a§1a2 — agB(l)aglal + algagBagl =0, (14.7)

where
B(l) — TBT_l, B(2) — (T —+ alZ)B(T -+ a12>_1,

By, = [(T + al)agl,B], (148)

Thus now symbol of operator B depends on mq, ms, t3, and z. Of course, it can
depend also on other discrete variables, but we are not interested here in this
dependence. By means of this operator we introduce dressing operator K as solution
of the problem (5.1). Thanks to (5.8) and condition (5.9) we again derive to(5.12).
In order to find evolution of the dressing operator with respect to t3 we differentiate
(5.1) that gives 01(Ky, + K(T + ay)az') = (K;, + K(T + a1)az*)B. This means

that K, + K(T +a1)a; " obeys the same d-equation but with another normalization
condition. Thus again taking (5.9) into account we derive:

Ky, + K(T + ay)az' = a3 (T + aguaz ' — u'Y + a))K. (14.9)
Definition of the Jost solution is now modified with respect to (7.2) and (7.3):

maq, ) = ) » U3 ! 12 ! 717 .
QO( meo tg) K(m1 meo t3 Z)Zm (Z +a )m2€ 3(2ta1)ag (14 10)
Further on, we get for the Lax pair:

o = oW 4 (1@ — 0 4 ay) e,

B (14.11)
az Py = o) +(azuaz* — ul? + a) .
In order to simplify this equation we introduce
U(ml, mao, tg) = u(ml, mao, tg) — miay — MoQo (1412)

and notice that without lost of generality we can choose az = 1, that follows due to
rescale

v(m, ts) — ai* T y(m, ty)az ™ ™2,
QOEma tzi N aznl-i-mz—i-l <p((m, :3)3 (1413)
Then Lax pair and equation of motion take form
0@ = oW 1@ — ), (14.14)
1, = W =0V =) g, (14.15)
(W® —o®), + (1D 4 ) (0@ — W) 4 v? % Z g, (14.16)

that can be simplified in the Abelian case.
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14.2 Limit ay — o0
Next, let consider limiting procedure (14.5) for k = 2.
(agBay' — agBagl)(l)al + (ayBy, — agBt3)(1)—
- a2a33t2a§1 + agagBt3a2_1 - a1a2Ba2_1 + alagBagl =0. (14.17)
Here
BW = TBT! B, =[(T ;LB
? . t2 [( +a'1)a2 ? ]’ (1418)
By, = [(T + a1)a3 ", B,

(cf. (14.8)), where now symbol of operator B depends on one discrete variable
my, two continuous variables t, and t3, and one complex parameter z. The same
is dependence of the symbol of the dressing operator K. Repeating the dressing
procedure as above we get equations of the Lax pair:

Ky, + K(T + ay)ay* = a; YT + aqua;' —uY + a)) K, (14.19)
Ky, + K(T + ay)az* = a3 /(T + azuaz’ —uY +a))K. (14.20)

where the second equation is just (14.9) and the first one is derived in analogy. Then
we define

o(my, te, ts, 2) = I?(ml, to, t3,2)2™ explta(z + ay)ay ' +t3(z +ar)az?].  (14.21)
For sake of simplicity we introduce
v(ml, mao, t3) = u(ml, mao, t3) — miaq (1422)

(cf. (14.12)) and rescale:

my + mo + 1 mi + Mo
v(m, t) — (a2a3) 2 v(m, t) (CLQCLg) 2 s (14 23)
my+mg + 1 '
o(m,t,z) = (azaz) 2 o(m,t, 2).
Let constant operator o obeys
o’ = ayaz’, (14.24)
then Lax pair takes the form
a g, = W +ava™ — oWy, (14.25)
a o, = oW +Hawa —vW] g, (14.26)

and compatibility equation is

(v —avW)  — (va™' — oflv(l))t3 + [va — avW va™t —a W] =0, (14.27)

to

It is interesting to mention that this nonlinear equation becomes the linear one if «
commutes with v (i.e., in the Abelian case) and if a~! is proportional to o with a
c-number coefficient.
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14.3 Limit a; —

Finally, in the limit (14.5) for k¥ = 1 we come back to the system symmetric now
with respect to three continuous times ¢;, j = 1,2, 3. Limit of (14.17) reads as

a10y, (agBay' — azBaz') + cycle(1,2,3) = 0. (14.28)

Omitting details close to the previous ones we get that the Lax pair is given by any
two equations of the system

a1 Py = A2 Py, _l'(alual_1 - a2ua2_1) 2
ag py, = ag gy, +(aguay' — aguaz') @, (14.29)

a3 Py, = A1 Py, +(a3ua51 - alual_l) 2
and equation of compatibility is

-1 ~1 -1,-1 -1 -1
al(aguag — QUG )1 + asasuay “ag (agua3 — AU, )+

+ cycle(1,2,3) = 0. (14.30)

t

14.4 Limit as — ai

Following (14.1)—(14.4) we set az = a; + xbs, where x is a parameter and b3 (b3 in
notation of (14.1)) is a constant operator, commuting with 7', a;, and as. Then by
(14.4) B® = B — :EB,S) + o(z) when x — 0, where again to simplify notation s
is denoted as t3 (different from ¢3 in (14.8)). Inserting this B®) we get in the first
order of z equation

B, ay, — ay, By — (B — BM)b, + by (B® — BW) =0, (14.31)
where

B(l) _ TBT_l, B(z) — (T + a12)B(T + a12)_1,

14.32
B, = [bsT7", B. (14.32)

Thus symbol of operator B again depends on two discrete variables, m; and msy, one
continuous, t3, and complex parameter z. Taking the latter equality into account we
have to consider 0-derivative of K;, = [bsT !, K], but in order to avoid singularity
we multiply this expression by 7" from the right. In analogy to the above we have:

O (KT — by KD + Kbs) = (K, T — b3 KV + Kby) B,

Asymptotically K;,T — by K=Y + Kby tends to uy, and thus we get K;,T — by K1 +
Kbs = ut3K(_1), or

Ky, + KbsT7' = (uy, + bs) KCVTL (14.33)
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In correspondence to (14.32) we define

(p(ml,mg,tg,z) = K(ml’m%tg’ Z)Zml (Z + a12)m26t3b3/z’

so that Lax pair we get:

K@ = KO 4 (u® — o0 4 41K,
Ky = (ug, +b3) K.

Introducing
v(my, ma, t3) = u(mi, ma, t3) — aymy — agmy + bsts,
we get finally

o = o0 L (4@ — 0y,

Pr, = Uz, o

Nonlinear equation is the compatibility condition of these equalities:

(0@ — WD 12 (@) @)y — g,

14.5 Limit as — a1

(14.34)

(14.35)
(14.36)

(14.37)

(14.38)
(14.39)

(14.40)

We set as = a; + xby, where by is an operator commuting with 7', a;, and b3 and
by # b3, and consider limit x — 0 in the same way as in Sec. 14.4 above. In the first

order of = we get from (14.31) equation
(BWbs — b3B), = (BVby —0:B), ,
where t3-derivative is defined in (14.32) and, analogously,
By, = [0, T, B].
Omitting details we give here the final Lax pair

0, =V 0TV, = vy, U,

and resulting nonlinear equation
(1) (1)

Vg, Vg = Vg, Uy

where
U(ml, tg, t3) = u(ml, tg, tg) —aymy + bgtz + b3t3.
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(14.41)

(14.42)

(14.43)

(14.44)

(14.45)



14.6 Consequent limits: a3 — oo and as — a;. Non-Abelian
Toda chain

We mentioned already that one can combine limiting procedures (14.5) and (14.3)
in order to derive other integrable equations. As example we consider here the limit
a3 — oo and, afterward, limit as — a;. We start from (14.7) and set as = a; +
xby, where by is some constant operator. Then by (14.1)—(14.4) and (14.42) we get
dependence on t,,

B® =BW — 4B 4 o(x), & —0. (14.46)
Correspondingly,
BYW=TBT"', B, =[bLT"Bl, By,=[(T+a)a", Bl.  (1447)

Under substitution of (14.46) the zero order of (14.7) with respect to x is trivial,
while in the first order we get equation

B(l)bg + agBt2t3 — bgB — alBtz + agBtzaglal—
— agBaz 'by + byasBTVaz! = 0. (14.48)
In the same way as above we derive equations for the dressing operator:
KW =TKT™,

Ky, + KbyT74 = (uy, 4+ bo) KTVTL (14.49)
Ky, + K(T + ay)az* = a3 (T + azuaz’ —uY + a))K,

where the last equality is exactly (14.9). Now we introduce
v(my, to, t3) = u(my, to, t3) — myaq + bots, (14.50)
o(my, ta, ts, 2) = K (my, ta, t3, z)z"“et2b2271+t3(z+“1)“51, (14.51)
that gives by (14.49) Lax pair
(=1

= ,
o~ a0t ) (1452)
We see that without lost of generality it is possible to choose
a; =0, by = a3 =1, (14.53)
that simplifies the Lax pair to
fo = v @ (14.54)

@, = e =0V =),



and gives nonlinear equation, i.e., condition of compatibility in the form
Viyts + Uy (VY — ) + (v = v)1y, =0, (14.55)

where asymptotically
U(ml, tg, tg) ~ t2. (1456)

The latter equation is the well known non-Abelian two-dimensional Toda chain.
In order to prove this we introduce invertible operator g(my, 2, t3) such that

v, = g(g") 7 (14.57)

Inserting this v, in (14.55) and multiplying the result by ¢! from the left and g(—"
from the right, we get equality

_ _ _ _ -1
9 g+ 97 0D —0)g = (67 g + 9 (0N —0)g) Y. (14.58)

Thanks to (14.56) and (14.57) we can fix that at infinity v — v and g tends to a
constant invertible operator. Then (14.58) gives

oW — v = —g g7, (14.59)

and compatibility condition of (14.57) and (14.59) gives the non-Abelian Toda chain.
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