
Exercises on representations of GL(n,Fq) 17.01.2023

These exercises are due by January 24th. This is a general rule: the due date is one week
after the assignment. The final grade for the course is calculated as 0.1 of the percentage of
completely solved exercises. You may submit e.g. the high quality scans of your handwritten
solutions in the natural order. I will grade neither poor quality scans nor randomly ordered
scans. You may also submit your handwritten solutions as a hardcopy or solutions typeset
in TeX.

1. Construct isomorphisms a) SL(2,F2) ≃ S3.
b) PGL(2,F3) ≃ S4.
c) PSL(2,F4) ≃ A5 ≃ PSL(2,F5).
d) PSL(2,F9) ≃ A6.

2. Construct an isomorphism PSL(2,Z/4Z) ≃ S4.

3. Prove that for q odd, SL(2,Fq) has two conjugacy classes of cardinality 1, four conjugacy

classes of cardinality q2−1
2

, and q−3
2

classes of cardinality q(q + 1), and q−1
2

conjugacy classes
of cardinality q(q − 1).

4. Count the conjugacy classes of SL(2,Fq) for q = 2n.

5. Given subgroups H ⊂ G ⊃ J and their representations (V, ρ) and (W,σ), prove that the
assignment F 7→ TF defines an isomorphism from F := {F : G → HomC(V,W ) | F (jgh) =
σ(j)F (g)ρ(h)} onto HomG

(
IndGH(V ), IndGJ (W )

)
, where (TFf)(g) :=

1
|G|:|H|

∑
r∈G F (gr

−1)(f(r)).

Exercises on representations of GL(n,Fq) 24.01.2023

1. Prove that a) the group P =

{(
a b
0 1

)
, a ∈ F×

q , b ∈ Fq
}

is isomorphic to the group

of affine transformations of the line Fq.
b) Its irreducible (q−1)-dimensional representation is isomorphic to the natural represen-

tation in the space of functions on Fq with the zero sum.

2. Let q = pn. Consider the additive character Fp = Z/pZ ∋ k 7→ exp
(

2π
√
−1k
p

)
∈ C×

and compose it with the homomorphism Tr
Fp
Fq : Fq → Fp to obtain the additive character

ψ : Fq → C×. Prove that any character Fq → C× has a form ψa(x) := ψ(ax) for some
a ∈ Fq.

3. Define the Fourier transform FT: C[Fq] → C[Fq] by the formula

FT(f)(b) :=
√
q−1

∑
a∈Fq

f(a)ψ(ab).

Prove that FT(FT(f))(a) = f(−a) (Plancherel formula).
1
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4. Prove that
∑
a∈Fq

|f(a)|2 =
∑
b∈Fq

|FT(f)(b)|2 (Parseval identity).

5. For b ∈ Fq let Tb : C[Fq] → C[Fq] be the translation operator Tbf(a) := f(a+ b). Prove
that

a) FT ◦ Tb = ψ−b · FT (the composition of the Fourier transform with the operator of
pointwise multiplication by the function ψb).
b) FT(ψb · f) = Tb ◦ FT(f).

Exercises on representations of GL(n,Fq) 31.01.2023

1. In the setup of problem 5 of January 17th, if J = H and (W,σ) = (V, ρ), prove that the
algebra structure on EndG(Ind

G
HV ) (with respect to composition) corresponds (under the iso-

morphism of problem 5) to the convolution operation (F1∗F2)(g) =
1

|G|:|H|
∑

r∈G F1(gr
−1)F2(r).

2. Let G = GL(n,Fq), and let B ⊂ G be the Borel subgroup of upper-triangular matrices.
Prove that B\G/B = Sn (the matrices of permutations are the representatives of double
cosets). This is called the Bruhat decomposition (or Gauß method).

3. The algebra Hq := EndG(Ind
G
BC) is called the Iwahori-Hecke algebra. It has a basis

{Tw, w ∈ Sn} of characteristic functions of the double cosets multiplied by |G| : |B|2. Let
si = (i, i+ 1) ∈ Sn be a simple transposition. Prove that

a) (Tsi − q)(Tsi + 1) = 0.
b) TsiTsi+1

Tsi = Tsi+1
TsiTsi+1

and TsiTsj = TsjTsi if |i− j| > 1 (braid relations).
c) TyTw = Tyw if ℓ(yw) = ℓ(y) + ℓ(w), where ℓ(y) is the number of disorders in the

permutation y ∈ Sn (that is the length of a shortest word in the generators si representing
y).

4. Prove that Hq is generated by Ts1 , . . . , Tsn−1 with relations 3(a,b).

5. Prove that the algebra Hq is semisimple (i.e. Hq is isomorphic to a direct sum of matrix
algebras).

Exercises on representations of GL(n,Fq) 07.02.2023

1. Let V = Λ ⊕ Λ′ be a symplectic vector space (over Fq) decomposed into a direct sum
of two Lagrangian subspaces (so that Λ′ ∼= Λ∗). Let us write g ∈ GL(V ) in the block form

according to this decomposition: g =

(
α β
γ δ

)
. In this problem set we follow the convention

that g acts on V on the right: i.e. as on vector-rows. We set gI :=

(
δt −βt
−γt αt

)
(the

transposition denotes taking adjoint with respect to the identification Λ′ ∼= Λ∗). Prove that
a) g ∈ Sp(V ) ⊂ GL(V ) iff g · gI = Id.
b) The convolution algebra of complex functions on Sp(V )\GL(V )/Sp(V ) is commutative.
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2. We introduce the following symplectic automorphisms. For α ∈ Aut(Λ) we set d0(α) :=(
α 0
0 (αt)−1

)
. For a quadratic form Q on Λ we set t0(Q) :=

(
Id Q
0 Id

)
. For an isomorphism

γ : Λ′ ∼−→ Λ we set d′0(γ) :=

(
0 −(γt)−1

γ 0

)
. Prove that if g =

(
α β
γ δ

)
∈ Sp(V ), and γ is

invertible, then

g =

(
Id αγ−1

0 Id

)(
0 −(γt)−1

γ 0

)(
Id γ−1δ
0 Id

)
.

3. The symplectic group Sp(V ) acts on the Heisenberg group 0 → Fq → H → V → 0,
and (projectively) on the irreducible H-module (Wψ ≃ C[Λ], ρψ) with the central character
ψ : ρψ(h)Ag = Agρψ(h

g). Prove that we can take (Ad0(α)f)(λ) = f(λα).

4. Prove that we can take (At0(Q)f)(λ) = ψ(Q(λ)
2

)f(λ).

5. Prove that we can take (Ad′0(γ)f)(λ) := FT(f)(−λ(γt)−1).

Exercises on representations of GL(n,Fq) 14.02.2023

1. Let

(
0 −(γt1)

−1

γ1 0

)(
Id Q
0 Id

)(
0 −(γt2)

−1

γ2 0

)
=

(
Id Q1

0 Id

)(
0 −(γt)−1

γ 0

)(
Id Q2

0 Id

)
.

Prove that Q = γ−1
1 γγ−1

2 .

2. Prove that in the setup of Problem 1, we haveAd′0(γ1)At0(Q)Ad′0(γ2) = Γ(Q)At0(Q1)Ad′0(γ)At0(Q2).

3. Let u1 =

(
α1 β1
γ1 δ1

)
, u1 =

(
α2 β2
γ2 δ2

)
, and u1u2 = u =

(
α β
γ δ

)
∈ U (that is, γ, γ1, γ2

are all invertible). Prove that the cocycle c(u1, u2) = Γ(γ−1
1 γγ−1

2 ).

4. Prove that the Witt group Witt(Fq) is Z/4Z if −1 ̸∈ (F×
q )

2, and Z/2Z⊕Z/2Z otherwise.

5. Prove that for q ≥ 5, given any quadruple of Lagrangian subspaces in F2n
q , there is a

fifth subspace transversal to any one of the quadruple.

Exercises on representations of GL(n,Fq) 21.02.2023

1. Prove that the derived subgroup [Sp(V ), Sp(V )] = Sp(V ) for odd q.

2. Given a, b ∈ F×
q , we consider the quaternion algebra Ha,b over Fq with generators i, j

and relations i2 = a, j2 = b, ij = −ji. Prove that Ha,b ≃ Mat2×2(Fq).

3. For an arbitrary ground field F in place of Fq, prove that Ha,b ≃ Mat2×2(F ) iff the
quadratic form Q = x2 − ay2 − bz2 + abw2 on F 4 represents 0 (i.e. the equation Q = 0 has a
nontrivial solution), and otherwise Ha,b is a skew-field (a division algebra).



4

4. For an Fq-vector space Λ = Fnq , and f ∈ C[Λ] we define the Radon transform RT f ∈
C[Λ∗] as (RT f)(λ∗) := q−n/2

∑
λ∈Λ : ⟨λ,λ∗⟩=1 f(λ). For a character θ : F×

q → C× let C[Λ]θ be
the set of functions such that f(aλ) = θ(a)f(λ). Prove that both RT and FT take C[Λ]θ to
C[Λ∗]θ−1 and FT = γθ RT on C[Λ]θ for nontrivial θ, where γθ :=

∑
x∈F×

q
θ(x)ψ(x).

5. Prove that the Weil representations of SL(2,Fq) in C[Λ]± (for Λ = Fq) for additive
characters ψ, ψ′ such that there is no a : ψ′(x) = ψ(a2x), are not isomorphic (so this
way we obtain two different q+1

2
-dimensional representations of SL(2,Fq) and two different

q−1
2
-dimensional representations of SL(2,Fq)).

Exercises on representations of GL(n,Fq) 28.02.2023

1. Prove that a) g

(
1 1
0 1

)
g−1 ∈ U iff g ∈ B.

b) The normalizer of B in G is B.

c)

(
α β
γ δ

)(
x 0
0 y

)(
α β
γ δ

)−1

∈ B iff γ = 0 or δ = 0.

2. Given multiplicative characters µ1 ̸= µ2 : F×
q → C×, we denote by πµ1,µ2 the irre-

ducible induced representation IndGB(µ1, µ2). There are (q−1)(q−2)
2

pairwise non-isomorphic
representations of this type. Prove that the character value of πµ1,µ2 at

a) c1(x) :=

(
x 0
0 x

)
equals (q + 1)µ1(x)µ2(x).

b) c2(x) :=

(
x 1
0 x

)
equals µ1(x)µ2(x).

c) c3(x, y) :=

(
x 0
0 y

)
equals µ1(x)µ2(y) + µ1(y)µ2(x).

d) c4(z) (a matrix conjugate to the one of multiplication by z ∈ Fq2\Fq acting on Fq2 = F2
q)

equals 0.

3. Given a multiplicative character µ : F×
q → C×, we denote by Stµ the irreducible q-

dimensional subrepresentation of IndGB(µ, µ). There are q − 1 pairwise non-isomorphic rep-
resentations of this type. Prove that the character value of Stµ at
a) c1(x) equals qµ(x)

2.
b) c2(x) equals 0.
c) c3(x, y) equals µ(xy).
d) c4(z) equals −µ(zz̄) (where z̄ := zq).

4. Given a nontrivial additive character ψ : U = Fq → C× we denote by Whitψ the
Whittaker model representation IndGUψ. It has dimension (q2 − 1)(q − 1). Prove that the
character value of Whitψ (the Gelfand-Graev character) at

a) c1(x) equals (q
2 − 1)(q − 1)δ1,x.
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b) c2(x) equals (1− q)δ1,x.
c) c3(x, y) equals 0.
d) c4(z) equals 0.

5. Given a multiplicative character θ : F×
q2 → C× such that θF1

q2
̸≡ 1 (here F1

q2 = {z ∈ Fq2 :

zz̄ = 1}) we denote by πθ the corresponding (q−1)-dimensional discrete series representation

of G. There are q2−q
2

pairwise non-isomorphic representations of this type. Prove that the
character value of πθ at

a) c1(x) equals (q − 1)θ(x).
b) c2(x) equals −θ(x).
c) c3(x, y) equals 0.
d) c4(z) equals −θ(z)− θ(z̄).

Exercises on representations of GL(n,Fq) 07.03.2023

1. Recall the conjugacy classes in SL(2,Fq) (Problem 3 of 17.01.2023). We denote them by

e1 =

(
1 0
0 1

)
, e2 = −e1, e3 (the class of

(
1 1
1 0

)
), e4 (the class of

(
1 ε
1 0

)
, where ε ∈ F×

q \

(F×
q )

2), e5 = −e3, e6 = −e4, c3(x, x−1) (see Problem 2 of 28.02.2023), and c4(z) for z ∈ F1
q2 (of

norm 1). All the irreducible representations of SL(2,Fq) are restricted from GL(2,Fq) except
for the four q±1

2
-dimensional ones. Namely, IndGB(ξ, 1)

± (here ξ is the nontrivial character

F×
q → {±1}, and IndGB(ξ, 1)

± are eigenspaces of the Radon Transform with eigenvalues

±
√
ξ(−1)), and π±

τ (here τ is the nontrivial character F1
q2 → {±1}, and πτ |SL(2,Fq) = π+

τ ⊕π−
τ ).

Our goal is to compute the characters χ±
ξ and χ±

τ of these representations. First, prove that
the values of these characters on the classes c3 and c4 are exactly one half of the values of
the characters of IndGB(ξ, 1) and πτ on these classes.

2. Prove that a) the values of χ±
ξ (resp. χ±

τ ) at e3, e5 and also at e4, e6, are related by
multiplication by ξ(−1) (resp. τ(−1)).

b) χ±
ξ (e3) = χ∓

ξ (e4), and χ
±
τ (e3) = χ∓

τ (e4).

c) χ±
ξ (e3) =

1±
√
ξ(−1)q

2
, and χ±

ξ (e4) =
1∓
√
ξ(−1)q

2
, while χ±

τ (e3) =
−1±

√
ξ(−1)q

2
=

−1±
√

−τ(−1)q

2
,

and χ±
τ (e4) =

−1∓
√
ξ(−1)q

2
=

−1∓
√

−τ(−1)q

2
.

3. We consider the 2-dimensional vector space U = F2
q equipped with the hyperbolic

symmetric bilinear form B((x1, y1), (x2, y2)) = x1y2+x2y1. The multiplicative group F×
q acts

on F2
q by c(x, y) = (cx, c−1y) and preserves B. We also consider V = F2

q equipped with a
symplectic form ⟨, ⟩, andW = V ⊗U equipped with the tensor product symplectic form. Let
Λ ⊂ W be a Lagrangian subspace of the form ℓ⊗ U . Then we have the Weil representation
of Sp(W ) ⟳ C[Λ], and we restrict it to Sp(V )× F×

q ⊂ Sp(W ). Given any character µ of F×
q ,

the group Sp(V ) ≃ SL(2,Fq) acts in the eigenspace C[Λ]µ. Prove that if µ2 ̸≡ 1, then C[Λ]µ
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is an irreducible (q + 1)-dimensional representation of SL(2,Fq) induced from the character
µ of its Borel subgroup.

4. Decompose C[Λ]µ into irreducibles for µ : F×
q → {±1}.

5. Extend C[Λ]µ to a representation of GL(2,Fq) (choosing an extension of µ to a character
(µ1, µ2) : (F×

q )
2 → C×).

Exercises on representations of GL(n,Fq) 14.03.2023

1. In notation of Problem 1 of 07.03.2023, consider the representation πθ of SL(2,F3)
(where θ is a character F1

9 → C×, θ2 ̸≡ 1). Prove that
a) the image of πθ is contained in SL(2,C) ⊂ GL(2,C).
b) The kernel of πθ : SL(2,F3) → SL(2,C) is trivial. Thus, πθ is an embedding SL(2,F3) ↪→

SL(2,C).
Recall from Problem 1 of 17.01.2023 that the image of SL(2,F3) in PGL(2,C) is isomorphic

to the alternating group A4.

2. Let g ∈ SL(2,F3) be an elliptic element (note that all the elliptic elements form
a single conjugacy class), and let ζ ∈ SL(2,C) be a square root of πθ(g). Prove that
ζ {πθ(SL(2,F3))} ζ−1 = πθ(SL(2,F3)), so that the subgroup Γ ⊂ SL(2,C) generated by
πθ(SL(2,F3)) and ζ, has order 48.

3. Construct an isomorphism Γ/

{
±
(
1 0
0 1

)}
≃ PSL(2,Z/4Z). Recall from Problem 2

of 17.01.2023 that the image PSL(2,Z/4Z) of SL(2,Z/4Z) in PGL(2,C) is isomorphic to the
symmetric group S4.

4. In notation of Problem 1 of 07.03.2023, consider the representation π+
τ of SL(2,F5)

(where τ is a nontrivial character F1
25 → C×, τ 2 = 1). Prove that

a) the image of π+
τ is contained in SL(2,C) ⊂ GL(2,C).

b) The kernel of π+
τ : SL(2,F5) → SL(2,C) is trivial. Thus, π+

τ is an embedding SL(2,F5) ↪→
SL(2,C).

Recall from Problem 1 of 17.01.2023 that the image of SL(2,F5) in PGL(2,C) is isomorphic
to the alternating group A5.

5. For n ≥ 4, consider the binary dihedral subgroup Dn−2 ⊂ SL(2,C) of order 4(n − 2),

generated by

(
exp(2π

√
−1

2n−4
) 0

0 exp(−2π
√
−1

2n−4
)

)
and by

(
0 1
−1 0

)
. The tautological embedding

Dn−2 ↪→ SL(2,C) is denoted π1. Prove that apart from π1, the group Dn−2 has n − 4
irreducible 2-dimensional representations π2, . . . , πn−3, and four 1-dimensional characters
C, χ1, χ2, χ3.
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Exercises on representations of GL(n,Fq) 21.03.2023

1. We know from Problem 1 of 07.03.2023 that SL(2,F3) has 7 irreducible representations
C, St, IndGB(ξ, 1)±, π±

τ , πθ of dimensions 1, 3, 2, 2, 1, 1, 2. We form the McKay graph with ver-
tices labeled by these representations and edges V1 −→ V2 if V2 is a summand of V1 ⊗ πθ.
Prove that

a) V1 −→ V2 iff V2 −→ V1. Thus we obtain not a quiver (with directed arrows), but a
graph (with non-directed edges denoted V1 = V2 in place of V1 − V2 because I am too lazy
to draw tikz diagrams).

b) We get the graph

C∥∥∥
πθ∥∥∥

π+
τ IndGB(ξ, 1)

+ St IndGB(ξ, 1)
− π−

τ

2. Recall the subgroup Γ ⊂ SL(2,C) of Problem 2 of 14.03.2023. We will denote its
normal subgroup SL(2,F3) of index 2 by H. Prove that Γ has the following 8 irreducible
representations:

IndΓ
H(C) = C⊕ χ for a 1-dimensional character χ.

Furthermore, IndΓ
H(π

+
τ ) = IndΓ

H(π
−
τ ) =: ρ ≃ ρ⊗ χ is a 2-dimensional representation.

Furthermore, IndΓ
H(πθ) = π ⊕ π ⊗ χ, where π is the tautological 2-dimensional represen-

tation of Γ.
Furthermore, IndΓ

H(St) = σ ⊕ σ ⊗ χ for a 3-dimensional representation σ.
Finally, IndΓ

H(Ind
G
B(ξ, 1)

+) = IndΓ
H(Ind

G
B(ξ, 1)

−) =: ϱ ≃ ϱ ⊗ χ for a 4-dimensional repre-
sentation ϱ.

3. Prove that the McKay graph of Γ (with respect to tensoring with the tautological
representation π) is

ρ∥∥∥
χ π ⊗ χ σ ⊗ χ ϱ σ π C

4. We know from Problem 1 of 07.03.2023 that SL(2,F5) has 9 irreducible representations
C, St, IndGB(µ, 1), Ind

G
B(ξ, 1)

±, πη, πθ, π
±
τ of dimensions 1, 5, 6, 3, 3, 4, 4, 2, 2. Prove that the

McKay graph of SL(2,F5) (with respect to tensoring with the tautological representation
π+
τ ) is
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IndGB(ξ, 1)
−∥∥∥

π−
τ πη IndGB(µ, 1) St πθ IndGB(ξ, 1)

+ π+
τ C

5. Prove that the McKay graph of Dn−2 (with respect to tensoring with π1, notation
of Problem 5 of 14.03.2023) is

C χ3∥∥∥ ∥∥∥
χ2 π1 · · · πn−3 χ1

Exercises on representations of GL(n,Fq) 28.03.2023

1. Prove a)
∏
i,j

(1 + xiyj) =
∑
λ

sλ(x)sλt(y).

b) E(t)n =
∑
λ

sλ(x)sλt(y) =
∑
λ

(
n

λ

)
sλ(x)t

|λ| (where E(t) =
∑
ert

r =
∏
(1+xit), we set

y1 = . . . = yn = t, and 0 = yn+1 = yn+2 = . . . Furthermore,

(
a

λ

)
:=
∏
x∈λ

a− c(x)

h(x)
, and c(x)

is the content of x, and h(x) is the hook length of x).

c) H(t)n =
∑
λ

(
n

λt

)
sλt

|λ| (where H(t) =
∑
hrt

r =
∏
(1− xit)

−1).

2. We set yi = qi−1, 1 ≤ i ≤ n, and yi = 0, i > n. Prove

a)
n∏
i=1

E(qi−1) =
∑
λ

qn(λ
t)

[
n

λ

]
sλ, where

[
n

λ

]
:=
∏
x∈λ

1− qn−c(x)

1− qh(x)
.

b)
n∏
i=1

H(qi−1) =
∑
λ

qn(λ)
[
n

λt

]
sλ.

c)
∏
i,j≥1

(1 + xjq
i−1) =

∑
λ

qn(λ
t)

Hλ(q)
sλ(x).

d)
∏
i,j≥1

(1− xjq
i−1)−1 =

∑
λ

qn(λ)

Hλ(q)
sλ(x),

where Hλ(q) =
∏
x∈λ

(1− qh(x)) is the hook polynomial.

3. We set y1 = . . . = yn = t/n, yi = 0, i > n, and take the limit as n→ ∞. Prove
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a)
1

n|λ|

(
n

λ

)
→
∏
x∈λ

h(x)−1 =: h(λ)−1.

b)
∏
i

(
1 +

xit

n

)n
→
∏
i

exp(xit) = exp(e1t) =
∑
λ

sλ
h(λ)

t|λ|.

c) en1 =
∑
|λ|=n

n!

h(λ)
sλ ⇔ ⟨en1 , sλ⟩ = n!/h(λ).

4. Prove that the number of standard tableaux of shape λ ∈ P(n) equals Kλ,(1n) =
⟨sλ, hn1 ⟩ = n!/h(λ).

5. Prove that ⟨hn, pλ⟩ = 1 and ⟨en, pλ⟩ = ελ := (−1)|λ|+ℓ(λ) for any λ ∈ P(n).

Exercises on representations of GL(n,Fq) 04.04.2023

1. We identify Λ ⊗Z Λ with the ring of symmetric functions in variables x, y : f ⊗ g 7→
f(x)g(y). We define a coproduct ∆: Λ → Λ ⊗Z Λ by (∆f)(x, y) = f(x, y). We define a
counit ε : Λ → Z requiring that ε(Λn) = 0 for n > 0, and ε(1) = 1. Prove that
a) ∆hn =

∑
0≤k≤n hk ⊗ hn−k.

b) ∆en =
∑

0≤k≤n ek ⊗ en−k.
c) ∆pn = pn ⊗ 1 + 1⊗ pn (i.e. pn are primitive).
d) ∆sλ =

∑
µ sλ/µ ⊗ sµ.

2. We equip Λ⊗Z Λ with a scalar product such that ⟨f1 ⊗ g1, f2 ⊗ g2⟩ = ⟨f1, f2⟩ · ⟨g1, g2⟩.
Prove that ∆: Λ → Λ⊗Z Λ is adjoint to the multiplication m : Λ⊗Z Λ → Λ, and the counit
ε : Λ → Z is adjoint to the unit e : Z → Λ. In other words, the Hopf algebra Λ is selfdual.

3. For any f ∈ Λ we define D(f) : Λ → Λ by ⟨D(f)u, v⟩ = ⟨u, fv⟩ for any u, v ∈ Λ. Then
D : Λ → End(Λ) is a ring homomorphism. We denote D(sµ) by Dµ. Prove that

a) for any f ∈ Λ, f(x, y) =
∑

µDµf(x) · sµ(y).
b) D(hλ)mµ = 0 unless µ = λ ∪ ν (that is, µ is the union of reordered parts of λ and ν),

in which case D(hλ)mµ = mν .
c) For any f(x0, x1, . . .) ∈ Λ, (D(hn)f) (x1, x2, . . .) is the coefficient of xn0 in f .

d) D(f)(gh) =
∑

i(D(f
(1)
i )g) · (D(f

(2)
i )h), where ∆f =

∑
i f

(1)
i ⊗ f

(2)
i .

4. Prove that a) D(pn)hN = hN−n, that is D(pn) =
∑

r≥0 hr
∂

∂hn+r
, where we view the

symmetric functions as polynomials in hi, i ≥ 0.
b) D(pn) = (−1)n−1

∑
r≥0 er

∂
∂en+r

.

c) D(pn) = n ∂
∂pn

. In other words, if f ∈ Λ is written as a polynomial f = φ(p1, p2, . . .),

then D(f) = φ( ∂
∂p1
, 2 ∂

∂p2
, . . .) is a linear differential operator with constant coefficients.

5. Define an involution ω̃ = (−1)nω on Λn. Prove that
a) ω̃ is an antipode, i.e. m ◦ (ω̃ ⊗ Id) ◦∆ = m ◦ (Id⊗ω̃) ◦∆ = e ◦ ε : Λ → Λ.
b) Any primitive element p ∈ Λn (i.e. ∆p = p⊗ 1 + 1⊗ p) is proportional to pn.
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Exercises on representations of GL(n,Fq) 11.04.2023

1. Prove that the character of the parabolic induction Ind
GL(k+ℓ,Fq)
Pk,ℓ

(Vk ⊗ Vℓ) is equal to

the Hall product of characters χ(Vk) ∈ C[GL(k,Fq)]GL(k,Fq) and χ(Vℓ) ∈ C[GL(ℓ,Fq)]GL(ℓ,Fq)

(viewed as functions on the set of isomorphism classes of representations of Fq[t±1]).

2. Prove that for a partition λ = (imi) = (λ1 ≥ λ2 ≥ . . .) we have

q|λ|+2n(λ)
∏

φmi(λ)(q
−1) =

∏
qλ

t
1+...+λ

t
r(1− qν

t
r−λtr),

where the second product is taken over r = λ1, λ2, . . ., and ν = (λ1, . . . , λk−1) for r =
λk. Furthermore, λt stands for the dual partition (corresponding to the transposed Young
diagram), and φm(t) := (1− t) · · · (1− tm).

3. Construct a bijection between the set of partitions λ whose Young diagram is contained
in the k× ℓ-box and the set of sequences of nonnegative integers (a1, . . . , am; b0, . . . , bm) such
that

∑
ai = k,

∑
bj = ℓ, and a1, . . . , am, b1, . . . , bm−1 are all positive, but b0 and bm can

possibly vanish.

4. Fix a complete flag 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vk+ℓ = Ck+ℓ. We define the Schubert cell
Xλ ⊂ Gr(k, k + ℓ) as the set of all k-dimensional subspaces U ⊂ Ck+ℓ such that

dim(U ∩ Vb0) = 0, dim(U ∩ Vb0+a1) = a1,

...

dim(U ∩Vb0+a1+...+bi−2+ai−1+bi−1
) = a1+ . . .+ ai−1, dim(U ∩Vb0+a1+...+bi−1+ai) = a1+ . . .+ ai,

...

dim(U∩Vb0+a1+...+bm−2+am−1+bm−1) = a1+. . .+am−1, dim(U∩Vb0+a1+...+bm−1+am) = a1+. . .+am.

Prove that a) Gr(k, k + ℓ) =
⊔
λXλ.

b) Xλ is an orbit in Gr(k, k + ℓ) of the Borel subgroup of GL(k + ℓ,C) preserving the
above complete flag.

c) Xµ ⊂ Xλ iff µ ⊂ λ, i.e. the Young diagram of µ is contained in the Young diagram of
λ.

5. Construct an isomorphism Xλ ≃ C|λ|.

Exercises on representations of GL(n,Fq) 18.04.2023

1. (a) For partitions λ, µ, we denote by λµ (resp. λ⊗ µ) a partition with parts λiµi (resp.
min(λi, µj)). Prove that (λµ)t = λt ⊗ µt.
(b) Let M,N be O-modules of types µ, ν. Prove that the type of M ⊕N (resp. M ⊗N)

is µ ∪ ν (resp. µ⊗ ν).

2. Prove that the structure constant in the Hall algebra

Gλ
µ(1m)(q) = qn(λ)−n(µ)−n(1

m)
∏

i≥1

[λti−λti+1

λti−µti

]
q−1

.
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3. Prove (a) Rλ(1, t, . . . , t
n−1; t) = tn(λ)vn(t), where vn(t) =

∏n
i=1

1−ti
1−t .

(b)Qλ(1, t, . . . , t
n−1; t) = tn(λ)φn(t)/φm0(t), wherem0 = n−ℓ(λ), and φn(t) = vn(t)(1−t)n.

As n→ ∞, we get in the limit Qλ(1, t, t
2, . . . ; t) = tn(λ).

4. Prove
(a) Pλ(x1, . . . , xn; t) = vλ(t)

−1
∏

i<j(1−tRji)sλ(x1, . . . , xn) =
∏

λi>λj
(1−tRji)sλ(x1, . . . , xn),

where vλ(t) =
∏

i≥0 vmi(t) for λ = (imi) (starting from i = 0, so that m0 = n − ℓ(λ)), and
Rji are the raising operators.

(b) P(n) =
∑n−1

r=0 (−t)rs(n−r,1r).

5. Prove (a)
n∑
i=1

∏
j ̸=i

xj − txi
xj − xi

=
vn(t)

vn−1(t)
=

1− tn

1− t
.

(b)
n∑
i=1

∏
j ̸=i

(
1− xi

xj

)−1

= 1.

(c) Let (a1, . . . , an) ∈ Nn. We define c(a1, . . . , an) as the constant term of
∏

1≤i ̸=j≤n

(
1− xj

xi

)aj
.

Then c(a1, . . . , an) =
n∑
i=1

c(a1, . . . , ai − 1, . . . , an).

(d) c(a1, . . . , an) = (a1 + . . .+ an)!/a1! · · · an!.

Exercises on representations of GL(n,Fq) 25.04.2023

1. For the structure constants Pµ(x; t)Pν(x; t) =
∑

λ f
λ
µν(t)Pλ(x; t) prove

a)
∑
µ

tn(µ)fλµ(1m)(t) = tn(λ)−m(m−1)/2

[
ℓ(λ)

m

]
(t−1).

b)

(∑
µ

tn(µ)Pµ

)(∑
m

emy
m

)
=
∑
λ

tn(λ)Pλ

ℓ(λ)∏
j=1

(1 + t1−jy).

c)

(∑
µ

tn(µ)Pµ

)(∑
m

(−1)mem

)
= 1.

d)
∑
|µ|=r

tn(µ)Pµ = hr.

2. Prove that the Kostka polynomial K(r)µ(t) = tn(µ) for any |µ| = r.

3. Set Sλ(x; t) := det
(
qλi−i+j(x; t)

)
. Prove that

a) Sλ(x; t) =
∏

i<j(1−Rij)qλ =
∏

i<j(1− tRij)Qλ.

b)
∏
i,j

1− txiyj
1− xiyj

=
∑
λ

Sλ(x; t)sλ(y) =
∑
λ

sλ(x)Sλ(y; t).
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c) ⟨Sλ(x; t), sµ(x)⟩ = δλµ.

4. Prove that a)
∑
λ

Sλ(x; t)sλt(y) =
∏
i,j

1 + xiyj
1 + txiyj

.

b) If we specialize yi = ti−1, we get sλt(y) = tn(λ
t)Hλ(t)

−1 (the hook polynomial of Prob-
lem 2 of 28.03.2023).

c)
∑
λ

Sλ(x; t)t
n(λt)Hλ(t)

−1 =
∏

(1 + xi).

5. Prove that Kλ(1r)(t) = tn(λ
t)φr(t)Hλ(t)

−1 for any |λ| = r.

Exercises on representations of GL(n,Fq) 02.05.2023

1. Set xi = qi−1 for 1 ≤ i ≤ n, and xi = 0 for i > n. Prove that

a) E(t) =
n−1∏
i=0

(1 + qit) =
n∑
r=0

qr(r−1)/2

[
n

r

]
tr.

b) H(t) =
n−1∏
i=0

(1− qit)−1 =
∞∑
r=0

[
n+ r − 1

r

]
tr.

2. Prove that
∏
i≥1

1 + xiy

1− xi
=
∑
λ

tn(λ)
ℓ(λ)∏
j=1

(1 + t1−jy)Pλ(x; t).

3. Prove a) pr(x) =
∑
|λ|=r

tn(λ)
ℓ(λ)−1∏
i=1

(1− t−i)Pλ(x; t).

b) X(n)λ(t) = tn(λ)φℓ(λ)−1(t
−1); equivalently, Q(n)λ(q) = φℓ(λ)−1(q).

c) Xρ(n)(t) = 1 = Qρ(n)(q) for any partition |ρ| = n.

4. Prove that a)
∑
ρ

zρ(t)
−1Xρ(1n)(t)pρ(x) = φn(t)en(x) = φn(t)

∑
ρ

ερz
−1
ρ pρ(x), where ερ =

(−1)|ρ|−ℓ(ρ).

b) Xρ(1n)(t) = ερz
−1
ρ zρ(t)φn(t) =

n∏
i=1

(ti − 1)/
∏
j≥1

(tρj − 1); equivalently,

Qρ(1n)(q) = φn(q)/
∏
j≥1

(1− qρj).

5. Prove that a) tn(λ) =
∑
ρ

z−1
ρ Xρλ(t); equivalently,

∑
|ρ|=n

z−1
ρ Qρλ(q) = 1.

b) Xρλ(1) = ⟨pρ, hλ⟩.
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Exercises on representations of GL(n,Fq) 09.05.2023

1. We fix an identification kn = Fqn ≃ Fnq = kn. Then for any x ∈Mn := k×n , the invertible
operator of multiplication by x can be viewed as an element of Gn := GL(n,Fq), and we
obtain an injective homomorphism Mn ↪→ Gn. Its image is denoted Tn (a non-split maximal
torus), and if we change an identification kn ≃ kn, the torus Tn is replaced by its conjugate.
For any x ∈ Mn, the eigenvalues of the corresponding (semisimple) element of Tn ⊂ Gn are
Frix, 0 ≤ i ≤ n − 1. If the minimal polynomial of x is fx of degree dx, then the conjugacy
class of the corresponding element of Gn is µ, where µ(fx) = (1n/dx), and µ(f) = 0 for
f ̸= fx.
For a partition |ν| = n we have a maximal torus Tν = Tν1×· · ·×Tνℓ ⊂ Gν1×· · ·×Gνℓ ⊂ Gn.

Let Wν := NormGn(Tν)/Tν . Prove that Wν is isomorphic to the centralizer in Sn of an
element of the cycle type ν. In particular, W(n)

∼= Gal(kn : k) ≃ Z/nZ.
2. Prove that the number of conjugacy classes in Gn is equal to

∑
|ν|=n ♯(Wν\Tν) (the

number of orbits of Wν in Tν).

3. Prove that for a central function u on Gn, its value at the conjugacy class cµ is equal

to ⟨ch(u), Q̃µ⟩.

4. Let ν = (ν1, . . . , νℓ), |ν| = n, and let θν be a character of the torus Tν ≃Mν1×· · ·×Mνℓ ,

that is θν = (ξ1, . . . , ξℓ), where ξi ∈ Lνi = M∨
νi
. Then

∏ℓ
i=1 p̃νi(ξi) is the characteristic of

a certain character Rθν
Tν

of Gn (Green’s principal character, or Deligne-Lusztig induction).
Prove that

a) Rθν
Tν

depends only on the Fr-orbit of ξi, i.e. on the Wν-orbit of θν ∈ T∨
ν .

b) Distinct characters Rθν
Tν

for θν ∈
⊔
ν(Wν\T∨

ν ) are all mutually orthogonal in the space
An of central functions on Gn.
c) The characters Rθν

Tν
in b) above form an orthogonal basis of An.

d) Write down all the characters Rθν
Tν

explicitly for n = 2 (say, as linear combinations of
irreducible characters of Problem set of 28.02.2023).

5. Prove that a) Rθν
Tν

is irreducible iff θν is a regular character of Tν , i.e. its stabilizer in
Wν is trivial.

b) The value of Rθν
Tν

at the unipotent conjugacy class of Jordan type λ is (−1)n−ℓQνλ(q)
(the Green function).

Exercises on representations of GL(n,Fq) 16.05.2023

1. Prove that the central character of the irreducible representation of Gn corresponding
to λ : Θ → P , is ∆(λ) defined as follows. First, we view λ as a function on L: we set

λ(ξ) := λ(ϕ), where ϕ is the Fr-orbit of ξ ∈ L. Then we set ∆(λ) :=
∏

ϕ∈Θ ξ
|λ(ϕ)|
ϕ ∈ Ln =

M∨
n = (k×n )

∨, where ξϕ is any representative of an orbit ϕ.
So a scalar matrix a · Idn ∈ Gn acts as multiplication by ⟨∆(λ), a⟩n ∈ C×.
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2. Let Un ⊂ Gn be the subset of unipotent elements. For λ : Θ → P , ∥λ∥= n, we consider
the corresponding irreducible character χλ of Gn and set Eλ :=

∑
u∈Un χ

λ(u). Prove that

a) Eλ = ♯(Gn)
∑

|ρ|=n aρ(q)
−1⟨Sλ, Q̃ρ(f1)⟩ = ♯(Gn)⟨Sλ, hn(f1)⟩, where f1 = t− 1.

b) qn(n−1)/2ψn(q)hn(f1) =
∑

∥λ∥=nEλSλ, where ψn(q) =
∏n

i=1(q
i − 1) = (−1)nφn(q).

c) hn(f1) =
∑

∥λ∥=n ε(Sλ)Sλ, where ε : B → C is the algebra homomorphism such that

ε(p̃n(1)) = (qn − 1)−1, and ε(p̃n(x)) = 0 for x ̸= 1.
d) Eλ = (−1)a(λ)qN(λ)χλ(Idn), where a(λ) := n −

∑
ϕ |λ(ϕ)|, and N(λ) := n(n − 1)/2 +∑

ϕ d(ϕ)(n(λ(ϕ))− n(λ(ϕ)t)).

3. Consider the algebra homomorphism δ : B → C such that δ(p̃n(1)) = (−1)n−1(qn−1)−1,
and δ(p̃n(x)) = 0 for x ̸= 1. We have dλ = χλ(Idn) = ψn(q)δ(Sλ). We set S :=

∑
λ δ(Sλ)t

∥λ∥.
Prove that

a) S =
∏

ϕ

∑
λ δ(sλ(ϕ))t

|λ|·d(ϕ).

b) logS =
∑

ϕ

(∑
i log(1− (tq−i)d(ϕ))−1 +

∑
i<j log(1− (t2q−i−j)d(ϕ))−1

)
=
∑
m≥1

dm

(∑
i≥1

∑
r≥1

(tq−i)mr

r
+
∑
i<j

∑
r≥1

(t2q−i−j)mr

r

)
=
∑
m≥1

∑
r≥1

dm
r

imr

qmr − 1

(
1 +

∑
i≥1

tmrq−2imr

)

=
∑
N≥1

(
tN

N
+
∑
i≥1

t2Nq−2iN

N

)
= log(1− t)−1 +

∑
i≥1

log(1− t2q−2i)−1,

where dm is the number of orbits ϕ of cardinality d(ϕ) = m.

c) S = 1
1−t
∏

i≥1
1

1−t2q2i = (1 + t)
∏

i≥0
1

1−t2q2i = (1 + t)
∑

m≥0
t2m

(1−q−2)···(1−q−2m)
.

4. Prove that the sum of dimensions of all irreducible representations of Gn is equal to
a)
∑

∥λ∥=n dλ = (q − 1)q2(q3 − 1)q4(q5 − 1) . . . (n factors altogether).

b) The number of symmetric matrices in Gn.

5. Prove that a)
∑

∥µ∥=2n dµ = (q− 1)q2(q3− 1)q4(q5− 1) . . . (q2n− 1), where the sum runs

over all µ such that µ(ϕ)t is even for all ϕ.

b) This is equal to the number of nondegenerate skew-symmetric bilinear forms on k2n.
By the way, the sum

∑
∥µ∥=2n χ

µ (the summation runs over the same set as in a) above) is

equal to the induced character Ind
GL(2n,Fq)
Sp(2n,Fq) (C). The fact that Ind

GL(2n,Fq)
Sp(2n,Fq) (C) has a simple

spectrum follows from Problem 1b) of 07.02.2023.

Exercises on representations of GL(n,Fq) 23.05.2023

1. Let Mn ⊂ Gn = GL(n, k) be the mirabolic subgroup formed by all the matrices with
the last row (0, . . . , 0, 1). It is the group Gn−1 ⋉ kn−1 of all the affine transformations of
kn−1. The group of characters kn−1 → C× has two orbits under the action of Gn−1: that of
the trivial character 1, and that of a nontrivial character ψ. We have StabGn−1 ψ ≃ Mn−1.
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Consider the “induction” functors on representation categories IndMn
Gn−1

and IndMn,ψ
Mn−1

defined

as follows. Given a representation of Mn−1, we extend it to a representation of Mn−1 ⋉ kn−1

such that kn−1 acts via ψ, and define IndMn,ψ
Mn−1

as the induction of this extended representation

from Mn−1 ⋉ kn−1 to Mn. Similarly, given a representation of Gn−1, we extend it to a
representation of Mn = Gn−1⋉ kn−1 with the trivial action of kn−1. We have the (two-sided)

adjoint “restriction” functors Res
Gn−1

Mn
and Res

Mn−1

Mn,ψ
: the former one sends a representation

of Mn to its kn−1-invariants acted upon by Gn−1, and the latter one sends a representation
of Mn to its (kn, ψ)-eigenspace acted upon by Mn−1.

Prove that Res
Gn−1

Mn
⊕ Res

Mn−1

Mn,ψ
: Rep(Mn) → Rep(Gn−1)⊕ Rep(Mn−1) and

IndMn
Gn−1

⊕ IndMn,ψ
Mn−1

: Rep(Gn−1)⊕Rep(Mn−1) → Rep(Mn) are mutually inverse isomorphisms

between the based Grothendieck groups of representation categories (with bases formed by
the classes of irreducible representations).

2. We define Res = Resn : Rep(Mn) →
⊕n

k=1Rep(Gn−k) and
Ind = Indn :

⊕n
k=1Rep(Gn−k) → Rep(Mn) by induction in n as follows:

Resn is the composition

Rep(Mn)
Res

Gn−1
Mn

⊕Res
Mn−1
Mn,ψ−−−−−−−−−−−→ Rep(Gn−1)⊕Rep(Mn−1)

Id⊕Resn−1−−−−−−→ Rep(Gn−1)⊕
n−1⊕
k=1

Rep(Gn−1−k),

and Indn is defined similarly.
Prove that Res and Ind are mutually inverse based isomorphisms between Rep(Mn) and⊕n
k=1 Rep(Gn−k). In particular, the irreducible representations of Mn are naturally num-

bered by λ : Θ → P such that ∥λ∥< n.

3. Recall that
⊕

nRep(Gn) forms a Hopf algebra H(k) with multiplication defined via
parabolic induction, and comultiplication ∆ defined via parabolic restriction. The Hopf al-
gebra H(k) is the tensor product of many copies of Λ (see the Problem set of 04.04.2023)
numbered by Φ. Let δ : H(k) → Z be the additive homomorphism that sends any represen-
tation of Gn to the dimension of its (Un, ψn)-eigenspace. Here Un ⊂ Gn is the subgroup of
strictly upper-triangular matrices, and ψn : Un → C× is the product of additive characters
ψ : k → C× applied to the elements right above the diagonal of an upper-triangular matrix.
We define D : H(k) → H(k) as the composition

H(k)
∆−→ H(k)⊗H(k)

Id⊗δ−−→ H(k).

Prove that a) δ is an algebra homomorphism H(k) → Z.
b) The composition Res ◦ ResMn

Gn
: Rep(Gn) →

⊕n
k=1 Rep(Gn−k) is equal to D − 1.

c) The composition Res ◦ IndMn
Gn−1

: Rep(Gn−1) →
⊕n

k=1 Rep(Gn−k) is equal to D.

4. a) Prove that for an irreducible character χλ ofGn, its restriction toMn is the direct sum
of Indn(χ

µ) over all µ such that for any ϕ ∈ Θ the corresponding µ(ϕ) is a little bit smaller
than λ(ϕ) (notation: µ ⊣ λ ⇔ µ(ϕ) ⊣ λ(ϕ) ∀ϕ), that is for any i, λ(ϕ)− 1 ≤ µ(ϕ) ≤ λ(ϕ).

In particular, χλ|Mn has a simple spectrum.
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b) Prove that the convolution algebra of complex functions onMn\Gn/Mn is commutative.

5. a) Prove that for an irreducible character Indn(χ
λ), ∥λ∥< n of Mn, its restriction

to Gn−1 is the direct sum of χµ over all µ, ∥µ∥= n − 1 such that λ ⊣ µ. In particular,

Indn(χ
λ)|Gn−1 has a simple spectrum.

b) Prove that the convolution algebra of complex functions on Gn−1\Mn/Gn−1 is commu-
tative.

Exercises on representations of GL(n,Fq) 30.05.2023

1. Given an ADE quiver Q, we say that a sequence of vertices (iν , . . . , i1) is +-admissible
if iν is a source of Q, and iν−1 is a source of the reflected quiver σiνQ (where we changed the
orientations of arrows going from the vertex iν), and so on. Let ν = ♯(R+) = ℓ(w0). Prove
that

a) there is a +-admissible sequence (iν , . . . , i1) such that w0 = si1 · · · siν .
b) The set {α1, . . . , αν} (where αk = si1si2 · · · sik−1

αik) coincides with R
+.

c) The set {V 1, . . . , V ν} (where V k = R+
i1
◦ R+

i2
◦ · · · ◦ R+

ik−1
Vik) contains all the indecom-

posable representations of Q.
d) For any 1 ≤ a < b ≤ ν, we have Hom(V b, V a) = 0 = Ext1(V a, V b).

2. Prove that any two products of all the simple reflections in a Weyl group W (in an
arbitrary order) are conjugate. Such a product is called a Coxeter element c ∈ W . Its order
is called the Coxeter number h, and its eigenvalues in the reflection representation W ⟳ h∗

are the roots of unity exp
(

2π
√
−1mk
h

)
, where 0 ≤ m1 ≤ . . . ≤ mr < h are called the exponents

of W (and r is the rank of h).

3. Let us color the vertices of Q black and white, so that the neighboring vertices have
different colors. Denote by s′ (resp. s′′) the product of all the black (resp. white) simple
reflections (note that all the reflections of the same color commute with each other), so that
c = s′s′′ is a Coxeter element. Prove that

a) 0 < m1, mj +mr+1−j = h, and m1 + . . .+mr = rh/2.
b) There are two linearly independent vectors v′, v′′ ∈ h∗ such that s′(Rv′ ⊕ Rv′′) =

s′′(Rv′ ⊕ Rv′′) = Rv′ ⊕ Rv′′, and s′, s′′ restricted to this Coxeter plane are the orthogonal
reflections with respect to the lines Rv′,Rv′′.

c) The Coxeter element c = s′s′′ restricted to the Coxeter plane Rv′ ⊕Rv′′ is the rotation
with the angle 2π/h.

d) The vectors v′, v′′ lie in the closure of the fundamental Weyl chamber, and the inter-
section of the Coxeter plane with the open fundamental Weyl chamber is R+v

′ ⊕ R+v
′′.

4. Prove that a) m1 = 1, mr = h− 1.
b) 2ν = ♯(R) = rh.
c) For any v ∈ h∗ we have

∑
α∈R(v, α)

2 = 2h(v, v) (we assume that for any root α ∈ R we
have (α, α) = 2).
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d) Let the highest root θ =
∑r

i=1 aiαi (coefficients in the basis of simple roots). Then∑r
i=1 ai = h− 1.

5. a) Compute the Coxeter numbers for all the simple root systems (at least, ADE).
b) Prove that if h is even, then w0 = ch/2.

Exercises on representations of GL(n,Fq) 06.06.2023

1. Let D be a central simple algebra (e.g. D = Ha,b a quaternion algebra with a basis
1, i, j, k and relations i2 = a, j2 = b, k = ij = −ji) over a local field K (e.g. K = R
or K = Qp). Let N : D → K be the norm map (a multiplicative homomorphism) (e.g.
N(x + yi + zj + wk) = x2 − ay2 − bz2 + abw2). Prove that D is a skew-field (a division
algebra) iff N−1(1) is compact.

2. Let S(R) denote the Schwartz space of smooth functions all of whose derivatives are
rapidly decreasing at infinity (e.g. f(x) = exp(−x2)) with its natural topology given by
a system of norms ∥ f ∥a,b= supx∈R |xa∂bxf |. Let S(R)∨ be the dual topological space of
distributions of tempered growth (e.g. ∆ =

∑
n∈Z δn ∈ S(R)∨). Prove that ∆ is a unique

distribution in S(R)∨ (up to a multiple) invariant under multiplication by exp(2π
√
−1x) and

under translations f(x) 7→ f(x+ 1).

3. Prove that the Heisenberg group HeisQ ⊂ HeisA acting on the Schwartz space S(A)
and its dual S(A)∨ has a unique (up to a multiple) invariant vector w ∈ S(A)∨. Here S(A)
is the restricted tensor product S(R) ⊗

⊗′
p S(Qp) over all places of Q with respect to the

system of vectors δZp ∈ S(Qp).

4. Let G = GL(2,K) ⊃ GL(2,O) =: K. Let B = NH ⊂ G be the Borel subgroup of
upper triangular matrices. Prove that

a) G = B ·K = N ·H ·K (Iwasawa decomposition).

b)

∫
G

f(g)dg =

∫
N

∫
H

∫
K

∥∥∥∥a1a2
∥∥∥∥−1

f(nak) dn da dk for a =

(
a1 0
0 a2

)
.

5. Prove that

∫
G

f(g)dg =

∫
N

∫
H

∫
N

∥∥∥∥a1a2
∥∥∥∥−1

f(naw0u) dn da du for w0 =

(
0 1
−1 0

)
.


