Characters, irreducibles, Fourier transform.
Problem 1. Let \mathbb{C}^{n} be the standard representation of S_{n} and $\mathbb{C}^{n}=V \oplus \mathbb{C}_{\text {triv }}$ is its decomposition into irreducible representations. Prove that $\Lambda^{k} V$ is irreducible for any $1 \leq k \leq n$.

Problem 2. Let T be a faithful representation of G and let χ_{T} be the corresponding character.
a) Show that $|\chi(g)| \leq \operatorname{dim} T$ and $\chi(g)=\operatorname{dim} T$ only for $g=e$.
б) Compute the character χ of $\left(T \oplus \mathbb{C}_{\text {triv }}\right)^{\otimes N}$ and $\left\langle\chi_{T}, \chi\right\rangle$.
в) Show that any irreducible occurs as an irreducible summand for $T^{\otimes N}$ for some N.

Definition. An algebraic integer is an element $z \in \mathbb{C}$ which is a root of a monic polynomial with integer coefficients.

Proposition. Algebraic integers form a subring of \mathbb{C}.
Problem 3. a) Let $C \subset G$ be a conjugacy class. Show that the element $\varphi_{C}=\sum_{g \in C} g$ is central in $\mathbb{C}[G]$ and hence acts by a scalar λ_{C} on any irreducible representation.
б) Show that the ring $\mathbb{Z}[G]$ is Noetherian \mathbb{Z}-module. Deduce from this fact that λ_{C} is an algebraic integer.
в) Let T be an irreducible representation of finite group G. Compute $\left\langle\chi_{T}, \chi_{T}\right\rangle$ and show that $\operatorname{dim} T||G|$.

Problem 4. Show that characters of a finite abelian group form a group \hat{G} which is isomorphic to G (not canonically).

Definition. Let $f: G \rightarrow \mathbb{C}$ be a function, G is a finite abelian group. The Fourier transform of f is a function $\hat{f}: \hat{G} \rightarrow \mathbb{C}, \hat{f}(\chi)=\sum_{x \in G} f(x) \chi(x)$. The Fourier transform is a map

$$
\mathcal{F}_{G}=\mathcal{F}: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(\hat{G})
$$

Problem 5. ("Fourier inversion formula") Let $S_{G}: \operatorname{Fun}(G) \rightarrow \operatorname{Fun}(G), f \mapsto g$ such that $g(x)=$ $f\left(x^{-1}\right) \forall x \in G$. Show that $\mathcal{F}_{\hat{G}} \circ \mathcal{F}_{G}=S_{G}$. Equivalently, for any $f \in \operatorname{Fun}(G)$

$$
f(x)=\frac{1}{|G|} \sum_{\chi \in \hat{G}} \hat{f}(x) \overline{\chi(x)}
$$

Let G be an arbitrary finite group. Then there is an isomorphism of vector spaces $\alpha: \mathbb{C}[G] \rightarrow F u n(G)$, $\alpha(x)=\delta_{x}$ for any $x \in G$. Define the convolution on $\operatorname{Fun}(G)$:

$$
f_{1} * f_{2}=\alpha\left(\alpha^{-1}\left(f_{1}\right) \alpha^{-1}\left(f_{2}\right)\right) .
$$

Notation: $\operatorname{Fun}_{*}(G)=(\operatorname{Fun}(G), *)$.
Problem 6. a) Show that $\left(f_{1} * f_{2}\right)(x)=\sum_{y z=x} f_{1}(y) f_{2}(z)=\sum_{y \in G} f_{1}(y) f_{2}\left(y^{-1} x\right)$
б) Let G be a finite abelian group. Then $\mathcal{F}: F u n_{*}(G) \rightarrow F u n(\hat{G})$ is an isomorphism of algebras.
в) ("Plancherel"theorem") \mathcal{F}_{G} is a unitary isomorphism (here we use the second orthogonality formula for characters in order to define a Hermitian form on $\operatorname{Fun}(\hat{G})$).

