- Задача 1. Пусть C коника по Штейнеру на проективной плоскости \mathbb{P}^2 . Мы знаем, что такое двойное отношение 4 точек на конике C. Проективным преобразованием коники C назовем такое биективное отображение коники C на себя, при котором сохраняются двойные отношения. Возьмем точку S в \mathbb{P}^2 , не лежащую на конике C и рассмотрим преобразование $I_S: C \to C$ коники C, отображающее точку $X \in C$ в точку $Y \in C$ такую, что прямая XY проходит через S. Преобразование I_S , очевидно, является инволюцией. Докажите, что эта инволюция I_S является проективным преобразованием коники C.
- **Задача 2.** Докажите, что всякая проективная инволюция на конике C имеет вид I_S , где S точка в \mathbb{P}^2 , не лежащая на конике C.
- **Задача 3.** Найдите необходимое и достаточное условие того, что две инволюции I_S и I_T на конике C коммутируют между собой, то есть $I_S \circ I_T = I_T \circ I_S$. Покажите, что в этом случае их композиция также является инволюцией на C.
- **Задача 4.** Покажите, что если три различные точки S, T, U, не лежащие на конике C, коллинеарны, то композиция инволюций I_S, I_T и I_U в любом порядке является инволюцией. Проверьте, что верно обратное утверждение.