Task 1: holomorphic functions, Cauchy formula, Taylor series. Deadline: February 13, 2024

January 26, 2024

Problem 1. Let $U \subset \mathbb{C}^{n}$ be a domain, and let $\Gamma \subset U$ be a regular holomorphic curve: a one-dimensional complex submanifold in U. Let α be a closed path in Γ that is contractible in Γ (i.e., contractible as a closed path in Γ). Consider a holomorphic 1-form, i.e., a 1 -form $\omega=\sum_{j=1}^{n} f_{j}(z) d z_{j}$ where $f_{j}(z)$ are holomorphic functions on U.
a) Prove that the integral along α of the form ω vanishes.
b) Is it true that for every holomorphic 1-form ω and every closed path α in U the integral of the form ω along α always vanishes?

Problem 2. Find convergence domain for the Taylor series at the origin of the following functions:
а) $\ln \left(1+z_{1}-2 z_{2}^{2}\right)$;
b) $\frac{1}{1-\left(z_{1}-z_{2}\right)^{2}+z_{3}^{2}}$.

Problem 3. Prove that the domain of convergence of any Taylor series is always logarithmically convex: if two points z, w are contained in the convergence domain, then for every $\alpha \in[0,1]$ the closed polydisk $\overline{\Delta_{R(\alpha)}}, R_{j}(\alpha):=\left|z_{j}\right|^{\alpha}\left|w_{j}\right|^{1-\alpha}$, is also contained in the convergence domain.

The Liouville Theorem on functions of one complex variable states that a function holomorphic and bounded on all of \mathbb{C} is constant.

Prove the following extensions of the Liouville Theorem to two variables.
Problem 4. Prove that every bounded function holomorphic on $\mathbb{C}^{2} \backslash K$ is constant, where
a) K is a ball;
b) K is a complex line;
d) ${ }^{*} K=\mathbb{R}^{2} \subset \mathbb{C}^{2}$ is the real plane.

Problem 5. Prove that every function holomorphic on the complement $\Delta_{(1,1)} \backslash S \subset \mathbb{C}^{2}$ extends holomorphically to all of $\Delta_{(1,1)}$, where
a) $S=\left\{\frac{1}{2}<\left|z_{1}\right|<1\right\} \times\{0\}$;
b) $S=\mathbb{R}^{2} \backslash\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<\frac{1}{2}\right\}$;
c) ${ }^{*} S=\mathbb{R}^{2}$.

Hint to c). Consider the fibration of the space \mathbb{C}^{2} by parabolas $i z_{2}=z_{1}^{2}+\varepsilon$. Try to adapt the proof of two-dimensional Hartogs Theorem (with argument on fibration by parallel lines) to this parabolic fibration.

