Seminars 1-3: holomorphic functions, Cauchy formula, Taylor series, Hartogs separate holomorphicity theorem

January 30, 2024

Problem 1. Find the \mathbb{C}-linear and \mathbb{C}-antilinear parts of the following \mathbb{R} - linear operators $L: \mathbb{C}^{2} \rightarrow \mathbb{C}$, here $z=\left(z_{1}, z_{2}\right), z_{k}=x_{k}+i y_{k}$:
a) $L(z)=x_{1}+y_{1}$;
b) $L(z)=x_{1}+y_{2}$;
c) $L(z)=x_{1}+2 i y_{2}$;
d) Homework: $(1+i) x_{1}+i y_{1}+2 x_{2}+3 y_{2}$.

Problem 2. Are the following functions of two variables $f(z)=f\left(z_{1}, z_{2}\right)$ holomorphic at the origin?
a) $f(z)=x_{1}+i y_{2}$;
b) $f(z)=x_{1}^{2}+2 i x_{1} y_{1}+y_{1}^{2}$;
c) $f(z)=x_{1}^{2}+2 i x_{1} y_{1}-y_{1}^{2}$;
d) $f(z)=\frac{z_{1}+z_{2}}{1+z_{1}}$;
e) Homework $f(z)=\frac{z_{1}^{2}+z_{2}^{3}}{z_{1}^{2}+z_{2}^{2}}$;
f) Homework $f(z)=\frac{z_{1}^{4}+z_{2}^{4}}{z_{1}^{2}+z_{2}^{2}}$.

Problem 3. Find which ones of the above functions are
a) continuous in a neighborhood of zero;
b) separately holomorphic (that is, holomorphic in each individual variable z_{k}) in a neighborhood of the origin.
Problem 4. Calculate the following integrals:
a) $\oint_{\{|z|=1\}} \frac{\sin \zeta+1}{\zeta} d \zeta, z \in \mathbb{C}$;
b) $\oint_{\left\{\left|z_{1}\right|=1\right\}} \oint_{\left\{\left|z_{2}\right|=1\right\}} \frac{\zeta_{1}+\zeta_{2}}{\zeta_{1}-\frac{1}{2}} d \zeta_{1} d \zeta_{2}$;
c) $\oint_{\left\{\left|z_{1}\right|=1\right\}} \oint_{\left\{\left|z_{2}\right|=1\right\}} \frac{\zeta_{1}+\zeta_{2}+1}{\zeta_{1}\left(\zeta_{2}-\frac{1}{2}\right)}$;
d) Homework $\oint_{\left\{\left|z_{1}\right|=1\right\}} \oint_{\left\{\left|z_{2}\right|=\frac{1}{3}\right\}} \frac{\cos \zeta_{1}+\zeta_{2}}{\zeta_{1}\left(\zeta_{2}-\frac{1}{2}\right)}$.

Problem 5. Write the Taylor series for the following functions at the origin (power series in the usual lexicographic order). Find their convergence domains.
a) $f(z)=\frac{1}{1-z_{1} z_{2}^{2}}$;
b) $f(z)=\frac{1}{1-z_{1}-z_{2}^{2}}$;
c) $f(z)=\frac{1}{\left(1-z_{1}\right)\left(1+z_{2}\right)}$;
d) Homework $f(z)=\frac{1}{\left(1-\left(z_{1}+z_{2}\right)^{2}\right)\left(1-z_{2}\right)}$;
e) Homework $f(z)=\sin \left(z_{1}+z_{2}^{2}\right)$.

Problem 6. Find the convergence domains of the power series obtained from the series below by opening the brackets and putting monomials in lexicographic order:
a) $\sum_{k=1}^{\infty} k\left(z_{1}^{2}+4 z_{2}^{2}\right)^{k}$.
b) $\sum_{k=0}^{\infty} 2^{-k}\left(z_{1} z_{2}+z_{3}^{3}\right)^{k}$.

The Taylor series at the origin of the functions:
c) $\frac{\sqrt{1+\left(z_{1}+2 z_{2}\right)^{k}}}{1+z_{1}}$.
d) $\ln \left(1+z_{1}+z_{2} z_{3}\right) \sqrt{1+z_{1} z_{2}}$.

Problem 7. Find the Taylor series at the origin of the functions
a) $\left(\left(1-z_{1}\right)\left(1-z_{2}\right) \ldots\left(1-z_{n}\right)\right)^{-1}$.
b) $\left(\left(1-z_{1}\right)\left(1-2 z_{2}\right) \ldots\left(1-n z_{n}\right)\right)^{-1}$.
c) $\ln \left(1-z_{1}\right) \ldots \ln \left(1-z_{n}\right)$.
d) $\exp \left(z_{1}+\cdots+z_{n}\right)$.

Problem 8. Find the partial derivatives of the above functions a), b), c) at the origin.
Problem 9. Find the function whose Taylor series at the origin is $\sum_{k, n \geq 1} k n z_{1}^{k} z_{2}^{n}$.
Problem 10. Prove that every bounded function holomorphic on $\mathbb{C}^{2} \backslash\{(0,0)\}$ is constant.
Problem 11. Prove the following multidimensional analogue of Hartogs' erasing singularity theorem. Let $R=\left(R_{1}, \ldots, R_{n}\right), R_{j}>0,1 \leq k<n, r=\left(r_{1}, \ldots, r_{k}\right), r_{s}<R_{s}$. Set $R^{k}=$ $\left(R_{1}, \ldots, R_{k}\right), R^{n-k}=\left(R_{k+1}, \ldots, R_{n}\right)$. Let $V \subset \Delta_{R^{n-k}} \subset \mathbb{C}^{n-k}$ be an open subset. Let $z=$ $\left(z_{1}, \ldots, z_{n}\right)$ be coordinates on \mathbb{C}^{n}. Set $t=\left(z_{1}, \ldots, z_{k}\right), w=\left(z_{k+1}, \ldots, z_{n}\right)$,

$$
A=\left(\Delta_{R^{k}} \backslash \overline{\Delta_{r}}\right) \times \Delta_{R^{n-k}}, B=\Delta_{R^{k}} \times V \subset \Delta_{R} \subset \mathbb{C}^{n}, \Omega=A \cup B
$$

Then every function holomorphic on Ω extends holomorphically to the whole polydisk $\Delta_{R}=$ $\Delta_{R^{k}} \times \Delta_{R^{n-k}}$.
Problem 12. Prove that every function holomorphic on the complement $\Delta_{(1,1)} \backslash S \subset \mathbb{C}^{2}$ extends holomorphically to all of $\Delta_{(1,1)}$, where
a) $S=\left\{\frac{1}{2}<\left|z_{1}\right|<1\right\} \times\{0\}$;
b) $S=\mathbb{R}^{2} \backslash\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}<\frac{1}{2}\right\}$;
c) ${ }^{*} S=\mathbb{R}^{2}$.

Hint to c). Consider the fibration of the space \mathbb{C}^{2} by parabolas $i z_{2}=z_{1}^{2}+\varepsilon$. Try to adapt the proof of two-dimensional Hartogs Theorem (with argument on fibration by parallel lines) to this parabolic fibration.

