Seminar 4: analytic sets, Weierstrass polynomials.

February 6, 2024

Problem 1. Show that if M is a connected complex manifold and $A \subset M$ is a nowhere dense analytic subset, then $M \setminus A$ is path connected.

Problem 2. Let $U \subset \mathbb{C}^n$ be an open domain, and let $f: U \to \mathbb{C}$ be a holomorphic function. Let its zero locus $Z := \{f = 0\}$ be non-empty. Let $Z_{crit} \subset Z$ denote the subset consisting of critical points of the function f with critical value 0. Let the complement $Z \setminus Z_{crit}$ be dense in Z. Show that each point $p \in Z_{crit}$ is a singular point of the zero locus Z: this means that there exists no neighborhood $V = V(p) \subset U$ such that $Z \cap V$ is a submanifold in V.

Hint. Suppose to the contrary that Z_f is a local submanifold at a point $x \in Z_f^s$. Then there exists a neighborhood W = W(x) and a biholomorphism H that sends W to a domain $V \subset \mathbb{C}^n$ and sends $Z_f \cap W$ to a coordinate subspace of codimension 1, say, $z_n = 0$. Then the line L through H(x) parallel to the z_n -axis intersects H(W) once, and so does any close line. But one can find a parallel line L' arbitrary close to L that intersects H(W) at least twice: the restriction to L of the function $f \circ H^{-1}$ has zero H(x) of total multiplicity bigger than one, since its differential at H(x) is zero.

Problem 3. (Homework) Consider an affine chart \mathbb{C}^n in complex projective space \mathbb{CP}^n . Prove that the closure in \mathbb{CP}^n of the zero set in \mathbb{C}^n of arbitrary polynomial is an analytic subset in \mathbb{CP}^n . Deduce that the union of the infinity hyperplane and the zero set is an analytic subset in \mathbb{CP}^n .

Problem 4.

a) Show that the subset $\{w + e^{\frac{1}{z}} = 0\} \subset \mathbb{C}^2 \setminus \{z = 0\}$ is an analytic subset, but its closure in \mathbb{C}^2 is not an analytic subset in \mathbb{C}^2 .

b) Find the minimal analytic subset in \mathbb{C}^2 that contains the latter closure.

Problem 5. Prove Weierstrass Division Theorem. Let $g(z_1, w) = z_1^d + a_1(w)z_1^{d-1} + \cdots + a_d(z_1)$ be a Weierstrass polynomial of degree d in $z_1 \in \mathbb{C}$; here $w \in \mathbb{C}^{n-1}$ (more precisely, we deal with its germ at $0 \in \mathbb{C}^n$): $a_1(0) = \cdots = a_d(0) = 0$. For every germ of holomorphic function $f(z_1, w)$ there exist a unique germ of holomorphic function $h(z_1, w)$ and a unique polynomial $p(z_1, w) = a_0(w)z_1^{\nu} + \cdots + a_{\nu}(w)$ in z_1 , $\nu = deg_{z_1}p < d$, with coefficients $a_j(w)$ holomorphic at w = 0 such that

(1)
$$f = hg + p.$$

a) Prove a version for one variable: for every holomorphic function F(u) of one variable uon a closed disk $\overline{D_{\delta}}$, every $d \in \mathbb{N}$ and every polynomial g(u) of degree d with all the roots contained in D_{δ} there exist a unique holomorphic function h on D_{δ} and a unique polynomial p(u) of degree less than d such that

$$F(u) = h(u)g(u) + p(u).$$

b)* Let D_{δ} and a polydisk $\Delta \subset \mathbb{C}_{w}^{n-1}$ centered at the origin be such that for every $w \in \Delta$ all the zeros of the polynomial $g(z_{1}, w)$ in z_{1} lie in D_{δ} , and f is holomorphic on $\overline{D}_{\delta} \times \Delta$. Prove formula (1) for

$$h(z_1, w) = \frac{1}{2\pi i} \oint_{|u|=\delta} \frac{f(u, w)}{g(u, w)} \frac{du}{u - z_1}.$$