Seminar 4: analytic sets, Weierstrass polynomials.

February 6, 2024

Problem 1. Show that if M is a connected complex manifold and $A \subset M$ is a nowhere dense analytic subset, then $M \backslash A$ is path connected.
Problem 2. Let $U \subset \mathbb{C}^{n}$ be an open domain, and let $f: U \rightarrow \mathbb{C}$ be a holomorphic function. Let its zero locus $Z:=\{f=0\}$ be non-empty. Let $Z_{\text {crit }} \subset Z$ denote the subset consisting of critical points of the function f with critical value 0 . Let the complement $Z \backslash Z_{\text {crit }}$ be dense in Z. Show that each point $p \in Z_{\text {crit }}$ is a singular point of the zero locus Z : this means that there exists no neighborhood $V=V(p) \subset U$ such that $Z \cap V$ is a submanifold in V.

Hint. Suppose to the contrary that Z_{f} is a local submanifold at a point $x \in Z_{f}^{s}$. Then there exists a neighborhood $W=W(x)$ and a biholomorphism H that sends W to a domain $V \subset \mathbb{C}^{n}$ and sends $Z_{f} \cap W$ to a coordinate subspace of codimension 1 , say, $z_{n}=0$. Then the line L through $H(x)$ parallel to the z_{n}-axis intersects $H(W)$ once, and so does any close line. But one can find a parallel line L^{\prime} arbitrary close to L that intersects $H(W)$ at least twice: the restriction to L of the function $f \circ H^{-1}$ has zero $H(x)$ of total multiplicity bigger than one, since its differential at $H(x)$ is zero.

Problem 3. (Homework) Consider an affine chart \mathbb{C}^{n} in complex projective space $\mathbb{C P}^{n}$. Prove that the closure in $\mathbb{C P}^{n}$ of the zero set in \mathbb{C}^{n} of arbitrary polynomial is an analytic subset in $\mathbb{C P}^{n}$. Deduce that the union of the infinity hyperplane and the zero set is an analytic subset in $\mathbb{C P}^{n}$.

Problem 4.

a) Show that the subset $\left\{w+e^{\frac{1}{z}}=0\right\} \subset \mathbb{C}^{2} \backslash\{z=0\}$ is an analytic subset, but its closure in \mathbb{C}^{2} is not an analytic subset in \mathbb{C}^{2}.
b) Find the minimal analytic subset in \mathbb{C}^{2} that contains the latter closure.

Problem 5. Prove Weierstrass Division Theorem. Let $g\left(z_{1}, w\right)=z_{1}^{d}+a_{1}(w) z_{1}^{d-1}+\cdots+$ $a_{d}\left(z_{1}\right)$ be a Weierstrass polynomial of degree d in $z_{1} \in \mathbb{C}$; here $w \in \mathbb{C}^{n-1}$ (more precisely, we deal with its germ at $\left.0 \in \mathbb{C}^{n}\right): a_{1}(0)=\cdots=a_{d}(0)=0$. For every germ of holomorphic function $f\left(z_{1}, w\right)$ there exist a unique germ of holomorphic function $h\left(z_{1}, w\right)$ and a unique polynomial $p\left(z_{1}, w\right)=a_{0}(w) z_{1}^{\nu}+\cdots+a_{\nu}(w)$ in $z_{1}, \nu=\operatorname{deg}_{z_{1}} p<d$, with coefficients $a_{j}(w)$ holomorphic at $w=0$ such that

$$
\begin{equation*}
f=h g+p \tag{1}
\end{equation*}
$$

a) Prove a version for one variable: for every holomorphic function $F(u)$ of one variable u on a closed disk $\overline{D_{\delta}}$, every $d \in \mathbb{N}$ and every polynomial $g(u)$ of degree d with all the roots contained in D_{δ} there exist a unique holomorphic function h on D_{δ} and a unique polynomial $p(u)$ of degree less than d such that

$$
F(u)=h(u) g(u)+p(u) .
$$

b)* Let D_{δ} and a polydisk $\Delta \subset \mathbb{C}_{w}^{n-1}$ centered at the origin be such that for every $w \in \Delta$ all the zeros of the polynomial $g\left(z_{1}, w\right)$ in z_{1} lie in D_{δ}, and f is holomorphic on $\bar{D}_{\delta} \times \Delta$. Prove formula (1) for

$$
h\left(z_{1}, w\right)=\frac{1}{2 \pi i} \oint_{|u|=\delta} \frac{f(u, w)}{g(u, w)} \frac{d u}{u-z_{1}} .
$$

